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Abstract:

The linkage between the Dirac's approach and the Hamilton-Jacobi
approach for higher order systems with constrained is studied. It is shown
that the Dirac's approach his permanently agree with the Hamilton-Jacobi
approach. The integrability conditions in the Hamilton-Jacobi approach hare
equivalent of consistency conditions in the Dirac's approach.

1 - Introduction

The Lagrangian formula for systems with constrained it been has
studied by Sundermeyer (1982),[28] Sudrshan and Mukunda
(1974),[27] while the  Hamiltonian  formulation for individual
systems is always done through two components developed by Dirac
(1950,1964)[3,4]. And another strongest the is way to evelop itd
and advanceHamilton-Jacobi for wverification singular systems
in the first order has been developed by (Rabei and Guler, 1992
Guler, 1992;, Rabei and Giiler1995,)[7,22,23,25,26].

The formal generalize of Hamilton-Jacobi formula for singular
systems with arbitrary higher-order Lagrangians was which he
developed by Teixeira and Pimentel (1998)[19].

The linkage the two approachs for first order systems with constrained
was developed by Rabei, 1996 [24].

The linkage the two approachs for second-order systems with constrained
was developed by researcher [30].
An any physical system with N degrees of freedom The Lagrangian functions

. . . ) .
of are the functions of generalize coordinates g, and a parameterti.e.

L=(9,0) (1)
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In Ostrogradski's formula the conjugates of momentum respectively to
ey and g, (m=1.....k-1) write it follow: by Pimentel and

Teixeira (1998) [19].

oL
Pr-ni = —m (2)
24;

oL .
= Dy (M=1...k-1) 3)

04q,
The Hessian matrix is defined

p(m—l)i

o’L .
Wi, = —5— i,(=1..,N 4

0q;0q,

If the rank of this matrix is N, systems which have this property are called
regular and their treatments are found in standard mechanics books, systems
which have the rank less than N are called singular systems.

In this research we want show up that the Hamilton-Jacobi approach is
totally agree with Dirac's approach, In section (2) Hamilton-Jacobi approach,
in section (3) Dirac's approach, in section (4) the linkage between the two
smothed istudied been has t, and in section (5) an example of singular with
thirdorder Lagrangian is constructed and solved by using the two methods.

2 -Hamilton-Jacobi approach

The Hamilton-Jacobi formulation for singular first order systems was
developed by Giler [7] and developed by Pimentel (1996)[18] for second
order systems and developed by Pimentel (1998)[19 ] for higher order
systems obtained the equations of motion are written as total differential
equations in many variables as follows:

< oH, .
day =Z P - dtey, 1=1..,N and u,m=0,.., k-1 (5)
m=0 Py
k1 oH'
m)a
dpy. = _Z P dt (), (6)
mo  Olu)c

Where, as before, =0,1,...,R;uum=0,1, .., k-1, ¢=0,1,..,N
A set of Hamilton-Jacobi partial differential equations by Pimentel and
Teixeira (1998)[19] given:

: . oS
H(m)a = P(m)a + H(m)a(t(u)a' Qyar Pya =

——)=0, 7
aq(u)a) (7)
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Where «=0,1,..,R. um=(01, .. k-1)
The equations of motion (5) and (6) can be written in the form

oH, = oH'
Ay = —-dt+ Z = —— ), (8)
ap(u)l p(u)l
dp,,, = Ho kia o dt (9)
(u)i aq(u aq(u)l (ma
These two equations (8) and (9) can be written using Poisson brackets
as:
dd i ={Amyi» Hoddt +{0 )i HEm)a}dt(m)a (10)
dp(m)i z{p(m)i’ Ho}dt+{p(m).7 (m)a}dt(m)a (11)

These total differential equations are integrable if, and only if, the
corresponding system of partial differential equations. For this purpose,
defining the linear operators »_  as: by Giiler [7]

Z(m)af(q(u)| Pwyi t) ={f, H(m)a}

_ of My, of i, of Hy, (12)
8q(u)i ap(u)i ap(u)i aq(u)i ot apo

Where u,m=0,12..,k-L and i=1,2,..,N the equations of motion are
integrable if, and only if, the bracket relations:

ll(m)a’}((m)ﬂjf :(Z(m)aZ(m)ﬁ _l(m)ﬂl(m)a)f =0 ) (13)

Is valid equation (13). If for a specific system relations (13) are not
satisfied, then one should enlarge the original system, adding new operators
In such a way that a complete system results. It should be noted that the
integrability conditions (13) are equivalent to the Poisson bracket relations:

{H(m a (m)/z}zo ) Voa,p (14)
To prove this, let us show that if (14) is valid, (13) will be complete.
Forming bracket

l?((m)a’l(m)ﬂj f= (Z(m)al(m)ﬁ _Z<m)ﬁl<m>a)f

15
= Xy T Hmypd = Zmpl £ H (o} (1)
One get:
lZ(m)a’Z(m)ﬂJf :{{va (myp H(m)a} {{f Hima (m)ﬂ} (16)
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However, the Jacobi relation read:

{{ f ! Hzm)ﬁ}' Hzm)a}+ {{Hl(m)ﬁ’ HEm)a}’ f }+ {{H’(m)av f }l HEm)ﬁ}: 0 (17)

Thus
[f{m;.m—* Z’{m;._s]f = {f {HrwﬂHrmm}} =0 (18)

If the integrability conditions are satisfied, the solutions of the total
differential equations of motion will be:
Aimya = Sa (t(m)a7 uy); (19)
Pmyc = (t(m)a' u,); (20)

Where u, is arbitrary parameter?

3- Dirac's Approach
The well-known method to investigate the Hamilton formulation of
systems with constrained was initiated by Dirac [3,4]. Now, the usual

Hamiltonian H, for any dynamical system is defined by Pimentel and
Teixeira (1998)[19] as:

(m+1)

Ho:ip(m)i G —L(G ) (12) M=(,..k-1)M=01 ki)  (21)

However, defined in this way, H, will not be uniquely determined, since

we may add to the canonical Hamiltonian H, any linear combination of the
primary constraints and define a new Hamiltonian, called total given by:

Hy =H, +u,®,, (22)

Where u, are arbitrary coefficients?
Making use of Poisson brackets, one can write the total time derivative

of any function g(q,, p.,) as:
. d
g =d—9t'={g, H:}={9,H.}+u,{g,®,} (23)

Where Dirac's symbol (=) for weak equality has been used in the sense that
one cannot consider @, =0 identically before working out the Poisson
bracket.
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The constraints will produce consistency conditions because the must
be valid at any time and consequently their time derivative must be weakly
zero. The consistency conditions are gives by:

& ~{®, H,}~0 (24)
Replacing g by @, in Equation (23), one obtains
o, ~{®,, H;}~{®,, H}+u {®,, ®,}~0; o, f=1,..,R (25)

These conditions may be identically satisfied with the help of the
primary constraints, either determine some of the arbitrary coefficientsu , or

generate new constraints that will be called secondary constraints. All these
constraints are divided into two types: first-class constraints, which have
vanishing Poisson brackets with all other constraints, and second-class
constraints, which have non-vanishing Poisson brackets. As there is an even
number of class Il constraints, this can be used for eliminate conjugate pair of
Pm and g, from the theory by expressing them a function of the
remaining p,, and q,, Muslinh 2002 [12]. The Dirac Hamiltonian for the
remaining variables is then the canonical Hamiltonian plus all the
independent first class constraints ¥,. So that the total Hamiltonian is
defined as

H. =H,+V,Y¥Y, (26)
Where they Y, include all first - class constraints. V, unknwn is

coefficients; which is called Lagrange's undetermined multiplier.
On the ,basis this equations of motion from equation (23) are written follows
as.

)i z{Q(m)i’ Ho}+v/1{q(m)i’LP/1} (27)

p(s)i z{Q(m)i’ Ho}+V{ Pmy;» Y.} (28)

4 - The Linkage Between the Two Approach
In the Hamilton-Jacobi approach the equations of motion (8) and (9)given:
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oH, oM

Ay = —>dt+ S
ap(u)i m=0 ap(u)i
oH’ L oH
p(u)i :—a 0 dt—ZTdt(m)a
q(u)i m=0 q(u)i

Making use of Poisson brackets, we can write these two equations as:

dq(m)i Z{Q(m)i’ H,}dt +{q(m)i’ H,(m)a}dt(m)a

(29)
dp(m)i :{p(m)i’ H,}dt +{p(m)i7 H’(m)a}dt(m)a (30)
Where
oH, oH,
=—% ={Gmi» Ho} (€29)
OPmyi OP(myi e e
oH'
(m)a _{ '
_qmi'Hma} (32)
ap(m)i (m) (m)
oH'
__ ma ={ '
- pmi’Hma} (33)
aq(m)i (m) (m)

In addition, the partial differential equation (12) can be written in the
form:

of  OH of oHy of )
X f= - +—=0;
aq(u)i ap(u)i ap(u)i aq(u)i ot (34)
of oH.,, of oH,.,
Zome | ma me _g

- Owyi Puyi Py M
say can we, the integral conditions (13) we can write in briefly :

[‘:'(0’ X{m]ﬁr]f - (rﬂf(m]a N ‘:(‘:(D - D,)

(35)
[‘:!r{m:]af’ f{mjﬁ] f= (f{mjaff'{mjg B f<mjﬁf{mja) r=0
We substituting equation (34) in to equation (35) we get:
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et = | e 2 e |
0 A (Mm)a - -
OPwyi \ Py yi Oy Py ot )y
(36)
_ 0 (GHB MHp,  oHy oH, +5H'(m)aJ of
i Py Ay WAy Py ot Py
[Z( yar X )ﬂ]f - ¢ [aH,(m)“ Hims _ Hioye Himy +J of
OPwyi \ Py Ay Oy Py 0 )i
(37)

__0 (GH'(mm Himp  Hyo Himyp +J of
aq(u)i ap(u)i aq(u)i 6q(u)i ap(u)i ap(u)i
Equating these bracket relations to zero leads to the following conditions:
oHy Him,  oHy Hip,

=0; (38)

OPwyi Owyi My Py
H e Hims  MHima Himyp _o (39)
OPuwyi 9w 0wy Py
oH’

m)a
— 2 _Q. 40

at (40)

These terms (38-40) nuance are functions to Hi,,, (d... Psmi) equal to zero; i.e.
oH’ oH’

dH/  =—®%dq, .. +—2%dp,.,. =0 (41)

(m)a (m)i (m)i
a (m)i ap(m)i

If we substitute for dq,, and dp, their expressions from equation (41) in

equations (8) and (9) become:

dH (). { Mg Mo _ Mg aH,(”‘)"‘)dt
OPwi %wyi  Mwyi Py

+ aHI(m)a aH (’m)ﬁ _ aH’(m)a 6H (’m)ﬁ dt (42)
(m)a
0wy Py 0wy Py

dH(,m)a :{Hzm)a’ H,dt +{H2m)zx’ HEm)a}dt(m)a =0 (43)
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This equation, which results from integrability conditions, is equivalent to the
consistency conditions (27-28) in Dirac's approach.

Thus, we conclude that in the Hamilton-Jacobi approach is always in exact
agreement with the Dirac's approach.

5 -An Example with Third-Order Singular Lagrangian:
The.5.1 Hamilton-Jacobi approach .

L= % (.q.lz + .q.zz) + q3q3 (44)
Equations (2) and (3) yield the generalized momenta:
Py :0:_H1p (45)
P, :O:_Hzp (46)

Py =—0; (47) m==1q (48)
m=="6, (49) m=0=-H7 (50)

=0 (51) ¢, =0, (52)

¢y =0; =—H7 (53)
The Hamiltonian H, is defined as:

Ho = PG, + P,4, + P3ds + 0, + 7,0,
(54)
+ 7585 + 4ty + 9,0, + 4,4, — L
or H,=p4, + 0, + 7,4, +%(¢512 +¢,%) (55)
The corresponding set of Hamilton-Jacobi partial differential equations are,

according to (16)

Hy =Py +H, =0, (56)
Hl,p =P+ Hlp =p,=0; (57)
Hép:p2+Hzp:p2:0; (58)
HY =n,+H{ =7,=0; (59)
H§¢:¢3+H§:¢3_q3:0- (60)
This set equations leads to the total differential equation:
dql :dql
dq, =dq, (61)
dQ:a :Chdqs
April (2024) SHlud VO ARy [ P2y A P
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dqz = qzdt (62)

dg, = g,dt (63)

dpz = (64)

dz, =0 (65)

dg, = —m,dt (66)

The integrall condition of the constraints H; ,H.”,H,", H!” and H!’must
equal zero. In fact, the variation of H}" leads to a new constraint H.", such
that:

dH." =dxz, = —p,dt; (67)
And

H." = p, =0. (68)
Making use of (68), then, one can rewrite the set equations (61 -66 ) in the
form:

dch = dch

dq, = dq, (69)

dq3 = C']3dq3

dch = qldt

dqz = qzdt (70)

dq$, = dQ3
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dd, = g,dt
dg, = ¢,dt
ddj; = ddj
dp, =0
dp, =0
dp, =

dz, =0
drz, =0
dz, =0

dg, = —x,dt
dg, = —x,dt
dg, = dd,

The solutions of these equations are:

7y =—Ct+C,
¢ =—-Ct+c,
¢, =—Ct+Cq

. ’

G, =—Cit> +c,t+c,
N 142
G, =—Clt® + .t +C
. (%] 142
g =—cit’+ct’ +ct+c

: "3 142
g, =—Cit® +cit® +cit +¢y

¢3:q3+c

(71)

(72)

(73)

(74)

(75)

(76)

The constraint (72) (73) and (76) implies that c=0 and p,, p,, P;, 7,7, and =,

are constants.
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5.2. Dirac's approach
Following Dirac, the total Hamiltonian reads
H: =H, +V1Hl,p +V2H;p +1,Hy” "',03H3’¢ (77)
or
H; = psd; + 7,6, + 7,0, +%(¢12 +¢12) (78)
+Vip; +V, Py 17575 + o5 (s — U3)

Where H,” ,H.," ,H;", and H}’ are the four primary constraints defined in -60)

( 57. These primary constraints satisfy the consistency condition (9)
identically zero:

Hl'p ={H1'p' HT}E 0;
H;" ={H;", H,}=0; (79)
Hy* ={H' H =0

But it gives a new secondary constraint forH;":

Hy" ={H;", H;}=p, =H;’ ~0. (80)
Imposing the condition H." ~0.
Making the equations of motion (11-12) we have

q1 :V1
qz :Vz (81)
U; =G,

p1:0
p, =0 (82)
p3=0

7, =0
7, =0 (83)
Ty = p3:0
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d, =4, (84)

¢52 =7 (85)

93 = ps
By direct comparison, it is again evident that these equations are in exact
agreement with these obtained by in the Hamilton-Jacobi approach (69-74).
equations
In the Hamilton-Jacobi approach the equations of motion are written in

terms of 4,,d,,0, and 4, , whereas, in the Dirac approachterms they

which are following the by expressed is of V,, V,,n, and p, respectively.
However the two approaches are equivalent since

a, =V,
1, =V
q2 2 (86)

U; =175
Py =p; =15 =0;,

Conclusion

The most common method for investigating the Hamiltonian treatment of
constrained systems with first order was initiated by Dirac [3,4].
What distinguishes this method is the consideration of initial limitations are
obtained using consistency conditions has been which he studied by
Pimentel for Higher-Order Singular of systems Hamiltonian [19].

Pimentel developed the second approach, with second-order singular
systems and this was treated which is Hamilton-Jacobi approach [18].

The equations of motion are written as total differential equations in
many variables. The coordinates corresponding to dependent momenta
considered as parameters.

This leads us to the fact that Dirac's approach completely consistent with
Hamilton-Jacobi approach. The egs. of motion (24-25) are equivalence to
eqs. (27-28). The integral conditions (35) are valid if, and only if, the total
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differential of H{, (0 Pmi) Must equal zero. In other form consistency

conditions leads to the integral conditions.
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