New Kinds of Open Sets

Anmar Hashim Al-Sheikhly Hatim Kareem Khudhair

Al-Mustasiriyah uni., college of science, mathematics dept

Abstract: In this paper, we introduced new types of open sets which we called p*open set and semi p*open set. Besides, we get the following results:

(i) Every open set is p*open and semi p*open. Examples are given to show that the converse may not be true .

- (ii) Preopen set and p*open set are equivalent.
- (iii) Every semi p*open set is semi p open set.

§1 Introduction:

The term "preopen" was used for the first time by Mashhour A.S., Abd El-Monsef M.E., and El-Deeb S.N., in 1984 [1], then G.B.Navalagi used "preopen" term in 2000 [2]. Semi p open set was introduced in [3]. In this paper, we introduced new types of open sets which we called p*open set and semi p*open set. Besides, we get the following results:

- (i)Every open set is p*open and semi p*open. Examples are given to show that the converse may not be true.
- (ii)Preopen set and p*open set are equivalent.

(iii)Every semi p*open set is semi p open set.

§2 Preliminaries:

Definition 2.1[2]:(i) A subset A of a topological space X is called a preopen set if $A \subseteq int(clA)$.

- (ii) The complement of a preopen set is called a preclosed set.
- (iii) The family of all preopen sets of X is denoted by po(X).

(iv) The family of all preclosed sets of X is denoted by pc(X).

Remarks 2.2 [4]:

- (i) The union of any family of preopen sets is a preopen set.
- (ii) The intersection of two preopen sets may not be preopen set.
- (iii) The intersection of any family of preclosed sets is preclosed.
- (iv) The union of two preclosed sets may not be preclosed .
- (v) Every open set is preopen but the converse may not be true.
- (vi) Every closed set is preclosed but the converse may not be true.

New Kinds of Open SetsAnmar Hashim Al-Sheikhly , Hatim Kareem Khudhair

- **Definition 2.3 [2]:** The intersection of all preclosed sets containing a set A is called the preclosure of A, and is denoted by pre(cl A).
- **Theorem 2.4 [4]:** A subset A of a topological space X is a preclosed set if and only if A = pre(cl A).
- **Definition 2.5 [4]:(i)** A subset A of a topological space X is called a semi p (denoted by sp) open set if there exists a preopen set U in X such that $U \subseteq A \subseteq pre(cl U)$.
- (ii) The complement of a semi p open set is called a semi p closed set.
- (iii) The family of all semi p open sets of X is denoted by spo(X).
- (iv) The family of all semi p closed sets of X is denoted by spc(X).

Remarks 2.6 [4]:

- (i) The union of any family of sp open sets is an sp open set.
- (ii) The intersection of two sp open sets may not be sp open set.
- (iii) The intersection of any family of sp closed sets is sp closed.
- (iv) The union of two sp closed sets may not be sp closed.
- (v) Every open set is sp open but the converse may not be true.
- (vi) Every closed set is sp closed but the converse may not be true.
- (vii) Every preopen set is sp open but the converse may not be true.
- (viii) Every preclosed set is sp closed but the converse may not be true.
- **Definition 2.7 [4]:** The intersection of all semi p closed sets containing a set A is called the semi p closure of A, and is denoted by sp(cl A).

§3 P* & SP* open sets

- **Definition 3.1:** :(i) A subset A of a topological space X is called a p^* closed (denoted by p^* closed) set if the preclosure of A is a subset of all semi p open set U which contains A. that is, whenever A \subseteq U and U is semi p, then pre(clA) \subseteq U.
- (ii) The complement of a p*closed set is called a p*open set(denoted by p*open).
- (iii) The family of all p*open sets of X is denoted by p*o(X).
- (iv) The family of all p*closed sets of X is denoted by p*c(X).

Theorem 3.2: Every open set is p*open.

Proof: Clear.

Remark 3.3: The converse of the above theorem may not be true as in the following example:

Let X = {1,2,3,4}, $\tau = \{\phi, X, \{1\}, \{4\}, \{1,4\}\}$

 $po(X) = \{\phi, X, \{1\}, \{4\}, \{1,4\}, \{1,2,4\}, \{1,3,4\}\} = p^*o(X)$

Theorem 3.4: Preopen set and p*open set are equivalent.

Proof:

(\Rightarrow):First let U be a preopen set. To prove that U is p*open (i.e to prove U^c p*closed)

ملحق العرو الثاني والسبعون 2011

New Kinds of Open SetsAnmar Hashim Al-Sheikhly , Hatim Kareem Khudhair

Let V be any sp open set such that $U^c \subseteq V$. To prove pre(clU^c) $\subseteq V$. Since U^c is preclosed, then by 2.4 we get that $U^c = pre(clU^c)$. So pre(clU^c) \subset V. (\Leftarrow): Conversely, let U be a p*open set. To prove that U is preopen (i.e $U \subset int(clU))$. Let $x \in U$, then by [5] we have $\{x\}$ either open or preclosed. If $\{x\}$ is open, then $x \in \{x\} \subseteq cl(U)$. So $x \in int(clU)$. Hence $U \subset int(clU)$. Now, if $\{x\}$ is preclosed, then X- $\{x\}$ is preopen. Since $x \in U$, then $x \notin U^c$ which leads to $U^c \subset X - \{x\}$. By 2.6(vii), we get X-{x} is sp open. Because U^c is p*closed, then pre(clU^c) \subseteq X-{x}. By [5] we have $pre(clU^c) = U^c \cup cl(int U^c)$ $U^{c} \cup cl(int U^{c}) \subset X - \{x\}.$ Then cl(int U^c) $\subseteq X$ -{x}. But $cl(int U^{c}) = (int(cl U))^{c}$. Hence $(int(cl U))^{c} \subset X - \{x\}$ $\{x\} \subseteq int(cl U)$ which leads to $x \in int(cl U)$ Hence $U \subset int(cl U)$) Thus U is preopen. **Remark 3.5**: Because of the equivalence relation between preopen and p*open, then they have the same properties. For example, the union of any two p*closed sets may not be p*closed. For instance, the sets $\{1\}\&\{2\}$ in X = $\{1,2,3\}$, $\tau = \{\phi,X, \{1,2\}\}, po(X) = \{\phi,X, \{1,2\}\}$

 $\{1\}$, $\{2\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$ = p*o(X), are p*closed but their union is not. And the intersection of any two p*open sets may not be p*open. Where the sets $\{1,3\}$, $\{2,3\}$ in above example are p*open but their intersection is not.

So we have proved the following theorem:

- Theorem 3.6: (i)The intersection of any family of p*closed sets is p*closed.
- (ii) The union of any family of p*open sets is p*open.

Proof: (i)

- Let $\{A_{\alpha}, \alpha \in \Lambda\}$ be any family of p*closed sets. To prove that $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is p*closed.
- Let U be any sp open set such that $\bigcap_{\alpha \in \Lambda} A_{\alpha} \subseteq U$. To prove that pre(cl $\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq U$.

Since A_{α} is p*closed, $\forall \alpha \in \Lambda$, then by 3.4 A_{α} is preclosed $\forall \alpha \in \Lambda$.

ملحق العرو الثاني والسبعون 2011

By 2.2(iii) we get $\cap_{\alpha \in \Lambda} A_{\alpha}$ is preclosed.

- By 2.4 we have $\bigcap_{\alpha \in \Lambda} A_{\alpha} = pre(cl \bigcap_{\alpha \in \Lambda} A_{\alpha})$
- Hence $pre(cl \cap_{\alpha \in \Lambda} A_{\alpha}) \subseteq U$
- Thus $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is p*closed
- (ii) The proof follows immediately from (i) By the same way by taking the complement.
- **Definition 3.7 :** A subset A of a topological space X is called a p*neighborhood of a point x in X if there exists a p*open set U in X such that $x \in U \subseteq A$.
- **Theorem 3.8:** A subset A of a topological space X is p*open in X if and only if it is a p*neighborhood of each of its points.

Proof: (\Rightarrow) :

Let A be a p* open set in X.

Then $x \in A \subseteq A \quad \forall x \in A$.

Hence A is a p*neighborhood of each of its points.

(\Leftarrow): Conversely, let A be a p* neighborhood of each of its points.

So $\forall x \in A$, there exists a p*open set U_x such that $x \in U_x \subseteq A$.

Clear $A = \bigcup_{x \in A} U_x$.

By 3.6(ii), we get A to be p*open.

- **Definition 3.9:** (i) A subset A of a topological space X is called a semi p*open (denoted by sp*open) set if there exists an sp open set U in X such that U⊆A⊆sp(cl U).
- (ii) The complement of a semi p*open set is called a semi p*closed (denoted by sp*closed) set.
- (iii) The family of all semi p*open sets of X is denoted by sp*o(X).

(iv) The family of all semi p*closed sets of X is denoted by sp*c(X).

Theorem 3.10: Every open set is sp*open.

Proof:Clear

Remark 3.11: The converse of the above theorem may not be true as in the following example:

Let X = {1,2,3,4}, $\tau = \{\phi, X, \{1\}, \{4\}, \{1,4\}\}$

 $po(X) = \{\phi, X, \{1\}, \{4\}, \{1,4\}, \{1,2,4\}, \{1,3,4\}\} = p*o(X)$

 $spo(X) = \{\phi, X, \{1\}, \{4\}, \{1,4\}, \{1,2,4\}, \{1,3,4\}, \{1,2\}, \{1,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{2,3,4\}\} = sp^*o(X)$

Theorem 3.12: Every semi p*open set is semi p open set.

Proof:

let U be sp*open.

Then there exists an sp open set V such that $V \subseteq U \subseteq sp(clV)$.

New Kinds of Open SetsAnmar Hashim Al-Sheikhly , Hatim Kareem Khudhair

- Since V is sp open, then there exists a preopen set O such that $O \subseteq V \subseteq pre(clO)$.
- Then $O \subseteq U$. To prove $U \subseteq pre(clO)$
- It is Clear that $sp(clV) \subseteq pre(clV)$
- Since V \subseteq pre(clO), then pre(clV) \subseteq pre(clO).
- Therefore $U \subseteq sp(clV) \subseteq pre(clV) \subseteq pre(clO)$.

References:

- [1] Mashhour A.S., Abd El-Monsef M.E., and El-Deeb S.N., "On pretopological Spaces", Bull. Math.Dela Soc.R.S.de Roumanie,28(76)(1984),39-45.
- [2] Navalagi G.B., "Definition Bank in General Topology", Internet 2000.
- [3] D.andrijevic, "Semi Preopen Sets", ibid.38(1986), 24-232.
- [4]Al-Khazraji,R.B.,"On Semi-P-Open sets", a thesis submitted to the college of education/ Ibn Al-Haitham of Baghdad university,2004.
- [5]Ivan Reilly, "Generalized Closed Sets: a survey of recent work", Internet, 2002.

انواع جديدة من المجاميع المفتوحة

المستخلص:

قدمنا في هذا البحث انواع جديدة من المجاميع المفتوحة والتي اطلقنا عليها اسم المجموعة المفتوحة p* والمجموعة شبه المفتوحة p* وقد حصلنا على النتائج التالية:

- (i) كل مجموعة مفتوحة p ومجموعة شبه مفتوحة p .
 امثلة توضح بان الاتجاه المعاكس قد يكون غير صحيح.
 - (ii) المجموعة المفتوحة pre و المجموعة المفتوحة p* هي مجاميع متكافئة.
 - (iii) كل مجموعة شبه المفتوحة p* هي مجموعة شبه المفتوحة p