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Abstract 
Principal components analysis (PCA) is effective at  compressing 

information in multivariate data sets by computing orthogonal projections that 

maximize the amount of data variance. Unfortunately, information content in 

hyper spectral images does not always coincide with such projections. We 

propose an application of projection pursuit (pp), which seeks to find a set of 

projections that are "interesting" in the sense that they deviate from the Gaussian 

distribution assumption. 

Once these projections are obtained, they can be used for image 

compression, segmentation, or enhancement for visual analysis. To find these 

projections, a two –step iterative process is followed where we first search for a 

projection that maximizes a projection index based on the information 

divergence of the projections estimated probability distribution from the 

Gaussian distribution and then reduce the rank by projections the data on to the 

subspace orthogonal to the previous projection . To calculate each projections, 

we use a simplified approach to maximizing the projection index, which does 

not require optimization algorithm. It searches for a solution by obtaining a set 

of candidate projections from the data and choosing the one with the highest 

projection index. The effectiveness of the  method is demonstrated through 

simulated examples as well as data from the hyper spectral digital imagery 

collection experiment and the spatially enhanced broadband and array 

spectrograph system. 

Introduction 
A principle component can be defined as a linear combination of 

optimally-weighted observed variables. In order to understand the meaning of 

this definition it is necessary to first describe how subject scores on a principle 

component are computed. In the course of performing a principle component 

analysis, it is possible to calculate a score for each subject on a given principle 

component [1]. For example,  in the preceding study, each subject would have 

score on two components. One score on the satisfaction with supervision 

component, and one score on the satisfaction with pay component [2]. The 



Principal Components Analysis as enhancement Operator and 

Compression factor ……………………………………KhaIiI Ibrahim Kadhim 
 

 32  3122الثاني والسبعون العدد ملحق        مجلة كلية التربية الأساسية                                               

subject's actual score on the seven questionnaire items would be optimally 

weighted and then summed their scores on a given component. 

Digital image     
Digital images have two basic components: pixels, and print size. These 

components can be changed, either individually or in tandem, to achieve 

different affects. The basic digital component of an image is the pixel. This is 

the smallest piece of digital information in the image. Pixels  are used to create 

the dots of color that make up the image. This concept should be immediately 

familiar from analog-word examples. When viewed on computer monitor, pixels 

always measure 1/72 of an inch, in both height and width (in other words, there 

are 72 pixels in an inch). The pixels can be stretched out to fit a specific print 

third component of digital images. The print size may be smaller or larger than 

its pixels height and width as viewed on a monitor [3]. When this happens, the 

output device stretches or compresses the dots of color to fit in the print size. 

The number of pixels in an inch of the print size determines the overall quality 

of the image, referred to as "resolution" these two factors normally have an 

inverse relationship to the another. Therefore, if the print size increases and the 

number of pixels stay the same, the pixels per inch (ppi) decreases meaning that 

resolution is lowered and vice versa. When this type of change is made, the 

number of pixels and therefore the file size is unchanged [4]. Dots are often used 

interchangeably with pixels in the expression of the resolution of a digital image 

(as dots per inch or "dpi") although this technically refers to resolution of a 

printed of the image. Scanners and bitmap image editors allow manipulation of 

these properties independently of one another-resolution can decrease or 

increase with the print size for example. This process is generally known as 

"resampling" a process which deletes or creates pixels from an image to achieve 

a desired effect. In some cases resampling is desirable, particularly in the case of 

decreasing resolution and file size. On the order hand, increasing is almost never 

desirable-When as increase in resolution occurs, the computer has to interpolate 

the  new pixels based on the surrounding pixels properties should be, the 

resulting image appears fuzzy or slightly out of focus. For example, resampling 

a 300 ppi JPEG down to 72 ppi while keeping the file size the same would result 

in an image that will look just as sharp on the monitor screen as it would in 

print, but will have a much smaller file size for faster loading. On the other 

hand, if an image exists at 72 ppi the software Would have to use interpolation 

to create an image at a higher resolution resulting in poor image quality. When 

an image is not resampled when it is resized, the variables of resolution and 

print size have an inverse relationship to each other while pixel dimensions 

remain the same. So if a slide that measures only 11.5 inches is at very high 

resolution then choosing not to resample when the image is resized will result in 

an image of the same file size with a lower ppi but a larger print size. To avoid 

this, digital images that need to be enlarging for a specific purpose should be 
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captured at a very high resolution to minimize the later decrease in resolution. 

 When resizing is done, the print size and resolution should change 

inversely to each other, keeping the size the same. In order word, file size is the 

key factor to consider when enlarging an image. When image are scanned 

without a known need for resizing, they should be scanned to meet the minimum 

requirements for resolution. 

 (Mathematical Description) 

Matrix Algebra  
I will be looking at eigenvectors and eigenvalues of a given matrix and 

assume a basic knowledge [5],[6]. 

 

 
Figure (1): Example of one non-eigenvector and one eigenvector 

 

 
Figure (2):Example of how a scaled eigenvector is still and eigenvector 

Eigenvectors: 
In the first example, the resulting vector is not an integer multiple of the 

original vector, whereas in the second example, the example is exactly 4 times 

the vector we began with. The vector in 2dimensional spaces. The vector  

represents an arrow pointing from the origin, (0, 0), to the point (3. 2). The other 

matrix, the square one, can be thought of as a transformation matrix. If we 

multiply this matrix on the left of a vector, the answer is another vector that is 

transformed from its original position [7]. It is the nature of the transformation 

that the eigenvectors arise from. Imagine a transformation matrix that, when 

multiplied on the left, reflected vector in the line y = x. Then we can see that if 

there were a vector that lay on the line y = x, its reflection it itself. This vector 

would be an eigenvector of that transformation matrix. Eigenvectors can only be 

found for square matrices and not every square matrix has eigenvectors. And, 

given an n n matrix that does have eigenvectors, there are n of then. Given a 

3 3 matrix, there are 3 eigenvectors. Another property of eigenvectors is that 

event if I scale the vector by some amount before I multiply it, I still get the 

same multiple of it as a result, as in figure 2. This is because if you are doing 
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making it longer, not changing its direction. Lastly, all the eigenvectors of a 

matrix are perpendicular, i.e.at right angles to each other, no matter how many 

dimensions you have. By the way, another word for perpendicular, in maths talk, 

is orthogonal. This is important because it means that you can express the data 

in terms of these of these perpendicular eigenvectors, instead of expressing them 

in term of the x and y axes [8].Another important thing to know is that when 

mathematicians find eigenvectors, they like to find the eigenvectors whose 

length is exactly one, because the length of a vector doesn't affect whether it's an 

eigenvector or not, whereas the direction does. So in order to keep eigenvector 

standard, whenever we find an eigenvector we usually scale it to make it have a 

length of l, so that all eigenvector have the same length. For example  is an 

eigenvector, and the length of that vector is  =   So we divided the 

original vector by this much to make it have a length of l. 

 
The usual way to find the eigenvector is by some complicated iterative 

method which is beyond the scope of this tutorial. If we ever need to find the 

eigenvector of a matrix in a program, just find a maths library that does it all for 

us. 

Eigenvalues:   
Eigenvalues are closely related to eigenvectors, in fact, we saw an 

eigenvalue in figure1. In both those examples, amount by which the original 

vector was scaled after multiplication by the square matrix was the same. In that 

example the value was 4.4 is the eigenvalue associated with that eigenvector [9]. 

No matter what multiple of the eigenvector we took before we multiplied it by 

the square matrix, we would always get 4 times the scaled vector as our result as 

in figure 2. So we can see that eigenvector and eigenvector always come in 

pairs. When we get a fancy programming library to calculate our eigenvector for 

us, we usually get the eigenvector as well. 

Exercises:    
For the following square matrix: 

 
Decide which, if any of the following vectors are eigenvector of that matrix and 

give the corresponding eigenvalue. 
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Figure (3): Eigen value 

 

 

 
Figure (4): scatter 

 

 
Figure (5): uncorelleted 
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Results Analysis: 
a. PCA as enhancement operator 

b. PCA as compression factor 

Size of origin image = 1024  bit 

New size after compression =1024  

Compression factor =2024448/ 674832= 2.99 

Conclusion:  
Principal component analysis is a powerful tool reducing a number of 

observed  variables into a smaller number of artificial variables that account for 

most of the variance in the data set. It is particularly useful when you need a 

data reduction procedure that makes no assumption concerning an underlying 

causal structure that is responsible for covariation  in the data. When it is 

possible to postulate the existence of such an under lying casual structure, it may 

be more appropriate to analysis the using exploratory factor analysis. Both 

principal component analysis and factor analysis are that used to construct 

multiple-item scales from the items that constitute questionnaires. 
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