Generalized Left Jordan ideals In Prime Rings

Kassim A. Jassim

Department of Mathematics College of Science-Baghdad Uni.

Ali Kareem Kadhim

Department of Mathematics College of Basic Education-Almustansiryah Uni

Abstract

Let R be a prime ring and U be a (σ,τ) -left Jordan ideal .Then in this paper, we proved the following, if $aU \subseteq Z$ ($Ua \subseteq Z$), $a \in R$, then a = 0 or $U \subseteq Z$. If $aU \subseteq C$ σ,τ ($Ua \subseteq C$ σ,τ), $a \in R$, then either a = 0 or $U \subseteq Z$. If $0 \neq [U,U]$ $\sigma,\tau \in Z$. Then $U \subseteq Z$. If $0 \neq [U,U]$ $\sigma,\tau \in Z$. Then $U \subseteq Z$. Also, we checked the converse some of these theorems and showed that are not true, so we give an example for them. **Keywords:** R be a prime ring, R be a center of R, R be a R be a field and R be a derivation of R.

(1)Introduction

Many authors studied Jordan ideals & Jordan ideals with derivation and proved many results when the ring is prime or semiprime .In the end of the twentieth century and the beginning of this century, Neset Aydin , H. Kandamar and K. Kaya Studied (σ,τ) -right Jordan ideals and proved that if R is a prime ring and U is a (σ,τ) -right Jordan ideal of R, then (i) if $(U,U)_{\sigma,\tau} \subset C_{\sigma,\tau}$, then R is commutative (ii) if U is commutative then R is commutative.(iii) aU=0 (or Ua=0) and $a \in R$, then a=0.(iv) if $U \subset C_{\sigma,\tau}$, then R is commutative ,see[2].

Also, Kassim A.Jassim proved when U is a (σ,τ) -left Jordan ideal of R that (i) if aU=0 (or Ua=0) and $a\in R$, then a=0 or $U\subseteq Z$.(ii) if characteristic of R not equal 2 and $U\subseteq C_{\sigma,\tau}$, then $\sigma(u)+\tau(u)\in Z(R)$ for all $u\in U$.(iii) if d(U)=0, $d\tau=\tau d$ and $d\sigma=\sigma d$, then $\sigma(u)+\tau(u)\in Z(R)$ for all $u\in U$, see [1].

In this paper we want to study the generalization some of above results in (σ,τ) -left Jordan ideal of R. So, we must recall the basic terms that we need them in this research, as the ring R is a prime ring if aRb=0, $a,b\in R$ implies that a=0 or b=0. Also, we must recall Z is the center of R if $r\in Z(R)$, then rx=xr for all $x\in R$. Also, we recall (σ,τ) -centeralizer $C_{\sigma,\tau}$ if $r\in C_{\sigma,\tau}$, then for all $x\in R$ $r\sigma(x)=\tau(x)r$. Also we recall the product $[\ ,\]$ on R as follows [x,y]=xy-yx, see [4]. Also, we used the identities in this paper as follows: For all x, y, $z\in R$. (i) [xy,z]=x [y,z]+[x,z] y. (ii) [x,yz]=[x,y] z+y [x,z]. (iii) $[xy,z]_{\sigma,\tau}=x$ $[y,\sigma(z)]+[x,z]_{\sigma,\tau}$ $y=x[y,z]_{\sigma,\tau}$

 $+[x, \tau(z)]y$.see[5] . Also, the Jordan product is define as follows: $(i)(x,y)_{\sigma,\tau}=x\sigma(y)+\tau(y)x.(ii)(xy,z)_{\sigma,\tau}=x(y,z)_{\sigma,\tau}-[x,\tau(z)]y=x[y,\sigma(z)]+(x,z)_{\sigma,\tau}y$.

In this paper we considered U be an additive subgroup of R. σ,τ : $R \rightarrow R$ be two mappings of R. Then we can defined U is a (σ,τ) -right Jordan ideal of R if $(U,R)_{\sigma,\tau} \subset U$. Also, U is (σ,τ) -Left Jordan Ideal of R if $(R,U)_{\sigma,\tau} \subset U$. So, a (σ,τ) -Jordan ideal of R, if U is a (σ,τ) -right and Left Jordan Ideal of R [3].

Also, every (σ,τ) -left Jordan ideal is a Jordan ideal but the converse is not true and the following example showed that

Example(1.1)[2]

Let
$$R = \begin{cases} \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
, $x, y, z, t \in F$, where F is a field of $ChF = 2$ be a ring of $2x2$ matrices with respect to the usual operations of addition and multiplication.
$$U = \begin{cases} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a, b \in F \end{cases}$$
 be an additive subgroup of R . Let $\sigma, \tau : R \to R$ be two mappings, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix}, \ \tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} t & -z \\ -y & x \end{pmatrix}. \quad \text{Then}$$

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} xa & yb \\ za & tb \end{pmatrix} + \begin{pmatrix} bx & by \\ az & at \end{pmatrix} = \begin{pmatrix} xa+bx & yb+by \\ za+az & tb+at \end{pmatrix}$$

$$= \begin{pmatrix} xa+bx & 0 \\ 0 & tb+at \end{pmatrix} \in U.$$

Thus, U is a (σ,τ) -left Jordan ideal of R, but U is not a Jordan ideal of R as follows

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} xa + ax & yb + ay \\ za + bz & tb + bt \end{pmatrix} = \begin{pmatrix} 0 & yb + ay \\ za + bz & 0 \end{pmatrix} \notin U$$

2.The Main Results

At first, we generalizing aU=0(Ua=0) in [1] as below.

Theorem (2.1):- Let U be a (σ,τ) - left Jordan ideal, $a \in R$, if $aU \subset Z$ ($Ua \subset Z$), then a = 0 Or $U \subset Z$.

<u>Proof:</u> By the hypothesis $aU \subseteq Z$, so for all $u \in U$, $x \in R$, we have

 $a(x \ \sigma(u) \ , \ u)_{\sigma,\tau} = a \ x[\sigma(u),\sigma(u)] + a(x,u)_{\sigma,\tau} \sigma \ (u) \ \text{ for all } u \in U, \ x \in R$

 $= a \ (x,u)_{\sigma,\tau} \ \sigma \ (u) \ \text{ Since } \ a(x\sigma(u),u)_{\sigma,\tau} \in Z \quad \text{ for all } u \in U, \ x \in R \text{ , then } \\ a(x\sigma(u) \ , \ u)_{\sigma,\tau} = a \ (x,u)_{\sigma,\tau} \ \sigma \ (u) \ \text{ .So,we get } \ a(x,u)_{\sigma,\tau} \ \sigma \ (u) \in Z \text{ This is implies that } \\ \text{for all } \qquad r \in R \text{, we get } [a(x \ , \ u)_{\sigma,\tau} \ \sigma \ (u) \ , r \] = 0 \ \text{ for all } u \in U, \ x \in R. \text{ Therefore, we have} \\$

 $0=\left[a(x\ ,u)_{\sigma,\tau}\,\sigma\left(u\right)\ ,r\ \right]=a(x\ ,u)_{\sigma,\tau}\left[\sigma(u)\ ,r\ \right]+\left[a(x\ ,u)_{\sigma,\tau},\ r\ \right]\,\sigma(u)\ ,\text{ for all }u\in U,$ $x,r\in R.$ Since by hypothesis $aU\subset Z$, then $\left[a(x\ ,u)_{\sigma,\tau},\ r\ \right]\,\sigma(u)=0$, for all $u\in U,$ $x,r\in R.$ Thus

 $a(x, u)_{\sigma,\tau} [\sigma(u), r] = 0$, for all $u \in U$, $x, r \in R$. Since $aU \subset Z$, $a(x, u)_{\sigma,\tau} R[\sigma(u), r] = 0$, for all $u \in U$, $x, r \in R$. Also, we have R is a prime ring then either $a(x, u)_{\sigma,\tau} = 0$, for all $u \in U$, $x \in R$. or $[\sigma(u), r] = 0$, for all $u \in U$, $r \in R$.

If $a(x, u)_{\sigma,\tau}=0$, for all $u\in U, x\in R$, then by the [1], we get either a=0 or $U\subset Z$. If $[\sigma(u), r]=0$, for all $u\in U, r\in R$, then $U\subset Z$

From the other hand if $Ua \subset Z$, then for all $u \in U$, $x \in R$.

 $(\tau(u) x, u)_{\sigma,\tau} a = \tau(u) (x, u)_{\sigma,\tau} a - [\tau(u), \tau(u)] x a = \tau(u) (x, u)_{\sigma,\tau} a$, for all $u \in U$, $x \in R$. So, we have

 $(\tau(u) \ x \ , \ u)_{\sigma,\tau} \ a = \tau(u) \ (x \ , \ u)_{\sigma,\tau} \ a$, for all $u \in U$, $x \in R$.Since $(\tau(u) \ x \ , \ u)_{\sigma,\tau} \ a \in Z$ (By hypothesis), then $\tau(u) \ (x \ , \ u)_{\sigma,\tau} \ a \in Z$, for all $u \in U$, $x \in R$. Therefore, for all $r \in R$

 $0=\left[\tau\left(u\right)\left(x\,,\,u\,\right)_{\,\sigma,\tau}\,a,\,r\,\right]\ ,\,\text{for all}\ \ r\in R$

 $=\tau(u) [(x,u)_{\sigma,\tau}a,r] + [\tau(u),r](x,u)_{\sigma,\tau}a$, for all $u\in U,x,r\in R$. Since $Ua\subseteq Z$, then $[(x,u)_{\sigma,\tau}a,r]=0$, for all $u\in U,x,r\in R$. Thus, we have

If $[\tau(u), r] = 0$, for all $u \in U$, then implies that $U \subset Z$

If $(x, u)_{\sigma,\tau} a = 0$ for all $u \in U$, $x \in R$, then by [1] we get either a=0 or $U \subset Z$.

Also, we generalized the above Theorem as below.

Theorem (2.2):- Let U be a (σ,τ) - left Jordan ideal, $a \in R$, if $aU \subset C_{\sigma,\tau}$ ($Ua \subset C_{\sigma,\tau}$), then either a = 0 or $U \subset Z$

Proof: - By hypothesis if $aU \subset C_{\sigma,\tau}$, we have

 $a(x\sigma(u),u)_{\sigma,\tau}=a\,x[\sigma(u),\,\sigma(u)\,]+a(x\,,\,u)_{\sigma,\tau}\,\sigma(u)=a\,(x\,,u\,)_{\sigma,\tau}\sigma\,(u),$ for all $u\in U,\,x\in R$. Therefore, we have

 $a(x \ \sigma(u) \ , \ u)_{\sigma,\tau} = a \ (x \ , \ u \)_{\sigma,\tau} \sigma \ (u)$, for all $u \in U, x \in R$. Since $aU \subset C_{\sigma,\tau}$, then $a(x \ \sigma(u) \ , \ u)_{\sigma,\tau} \in C_{\sigma,\tau}$, for all $u \in U, x \in R$ and also, we have $a(x \ , \ u)_{\sigma,\tau} \sigma \ (u) \in C_{\sigma,\tau}$, for all $u \in U, x \in R$. Then for all $r \in R$, we get $[a(x \ , \ u)_{\sigma,\tau} \sigma(u) \ , \ r]_{\sigma,\tau} = 0$ $0 = a(x \ , \ u)_{\sigma,\tau} [\sigma(u) \ , \sigma(r)] + [a(x \ , \ u)_{\sigma,\tau}, \ r]_{\sigma,\tau} \sigma(u) = a(x \ , \ u)_{\sigma,\tau} [\sigma(u) \ , \sigma(r)] = 0$, for all $u \in U, x, r \in R$. Then , we have $a(x \ , \ u)_{\sigma,\tau} [\sigma(u) \ , \sigma(r)] = 0$, for all $u \in U, x, r \in R$. Thus,

implies that $\tau(y)$ a(x, u) $_{\sigma,\tau}$ $[\sigma(u), \sigma(r)] = 0$, for all $u \in U$, $x,y,r \in R$. Since $aU \subset C_{\sigma,\tau}$, then a(x, u) $_{\sigma,\tau}\sigma(y)$ $[\sigma(u), \sigma(r)] = 0$, for all $u \in U$, $x,y,r \in R$. Therefore,

 $a(x, u)_{\sigma,\tau} R[\sigma(u), \sigma(r)] = 0$, for all $u \in U$, $x,r \in R$. Since R is prime ring, then either $a(x, u)_{\sigma,\tau} = 0$ or $[\sigma(u), \sigma(r)] = 0$, for all $u \in U$, $x,r \in R$.

If $a(x, u)_{\sigma,\tau}=0$, for all $u \in U$, $x \in R$. Then by [1], aU=0 implies that eithr a=0 or $U \subset Z$. If $[\sigma(u), \sigma(r)]=0$, for all $u \in U$, $r \in R$. implies that $U \subset Z$. For the other hand, if $Ua \subset C_{\sigma,\tau}$, then, for all $u \in U$, $x \in R$, we get $(\tau(u)x, u)_{\sigma,\tau}a = \tau(u)(x, u)_{\sigma,\tau}a = \tau(u)(x, u)_{\sigma,\tau}a$. Since $Ua \subset C_{\sigma,\tau}$, then $(\tau(u)x, u)_{\sigma,\tau}a \in C_{\sigma,\tau}$ and also we have $\tau(u)(x, u)_{\sigma,\tau}a \in C_{\sigma,\tau}$. Therefore,

 $[\tau(u)(x, u)_{\sigma,\tau}a, r]_{\sigma,\tau} = 0$, $r \in R$, for all $u \in U$, $x, r \in R$. Thus

 $0 = [\tau(u) \ (x \ , u \)_{\sigma,\tau} a, r \]_{\sigma,\tau} = \tau(u) \ [\ (x \ , u \)_{\sigma,\tau} a, r \]_{\sigma,\tau} + [\tau(u) \ , \tau \ (r) \] \ (x \ , u \)_{\sigma,\tau} a$ $= [\tau(u) \ , \tau \ (r) \] \ (x \ , u \)_{\sigma,\tau} a \ . \text{Therefore} \ , [\tau(u) \ , \tau \ (r) \] \ (x \ , u \)_{\sigma,\tau} a = 0 \quad , \text{ for all } u \in U \ , x,r \in R. \text{ Also , we have } [\tau(u) \ , \tau \ (r) \] \ (x \ , u \)_{\sigma,\tau} a \ \sigma(y) = 0 \quad , \text{ for all } u \in U \ , x,y,r \in R. \text{ So, by } Ua = C_{\sigma,\tau} \ , \text{ we get that } [\tau(u) \ , \tau(r) \] \ \tau(y) \ (x \ , u \)_{\sigma,\tau} a = 0. \text{So, we get for all } u \in U \ , x,y,r \in R \quad [\tau(u) \ , \tau(r) \] \ R \ (x \ , u \)_{\sigma,\tau} a = 0. \text{ Since } R \text{ is a prime ring, then either}$

 $[\tau(u), \tau(r)] = 0$ or $(x, u)_{\sigma, \tau} a = 0$, for all $u \in U$, $x, r \in R$.

If $[\tau(u), \tau(r)] = 0$, for all $u \in U$, $r \in R$. Then we get $U \subset Z$. If $(x, u)_{\sigma,\tau}a = 0$, for all $u \in U$, $x \in R$, then by [1], we get a = 0 or $U \subset Z$.

Now, the below theorem shows that if $0 \neq [U,U]_{\sigma,\tau} \subseteq Z$, then $U \subseteq Z$.

Theorem (2.3):- Let U be a (σ,τ) - left Jordan ideal ,if $0 \neq [U,U]_{\sigma,\tau} \subseteq Z$, then $U \subseteq Z$.

Proof :- By the hypothesis , we get $[(x \sigma(u), u)_{\sigma,\tau,u}]_{\sigma,\tau} \in Z$, for all $u \in U$, $x \in R$. So, we have $[(x \sigma(u), u)_{\sigma,\tau,u}]_{\sigma,\tau} = [x [\sigma(u), \sigma(u)] + (x, u)_{\sigma,\tau}\sigma(u), u]_{\sigma,\tau}$ $= [(x, u)_{\sigma,\tau}\sigma(u), u]_{\sigma,\tau}$

Since $[U,U]_{\sigma,\tau} \subseteq Z$, we have $[(x \sigma(u), u)_{\sigma,\tau}, u]_{\sigma,\tau} \in Z$.

Therefore, $[(x, u)_{\sigma,\tau} \sigma(u), u]_{\sigma,\tau} \in \mathbb{Z}$, for all $u \in U$, $x \in R$. Also, we have

 $[(x, u)_{\sigma,\tau} \sigma(u), u]_{\sigma,\tau} = (x, u)_{\sigma,\tau} [\sigma(u), \sigma(u)] + [(x, u)_{\sigma,\tau}, u]_{\sigma,\tau} \sigma(u)$

=[$(x, u)_{\sigma,\tau}$, $u]_{\sigma,\tau}\sigma(u) \in Z$, for all $u \in U$, $x \in R$. Also, we have

 $0 = [[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau}\sigma(u), r] = [(x, u)_{\sigma,\tau}, u]_{\sigma,\tau}[\sigma(u), r] + [[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau}, r] \sigma(u),$

for all $u \in U$, $x,r \in R$. By the hypothesis $[U,U]_{\sigma,\tau} \subset Z$, then $[(x,u)_{\sigma,\tau},u]_{\sigma,\tau}$ $[\sigma(u),r]=0$. Since $[U,U]_{\sigma,\tau} \subset Z$, we get $[(x,u)_{\sigma,\tau},u]_{\sigma,\tau}$ $[R[\sigma(u),r]=0$, for all $u \in U$, $x,r \in R$. By the primeness of R we get either

 $[\sigma(u), r] = 0$, for all $u \in U$, $r \in R$ or $[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau} = 0$, for all $u \in U$, $x \in R$ and this a contradiction with the hypothesis .So, we get $[\sigma(u), r] = 0$, for all $u \in U$, $r \in R$. Therefore $U \subset Z$.

$\overline{\text{Remark}(2.4)}$:

The converse for the above Theorem is not necessary true all the time, and the following example shows

Example(2.5)[2]

Let $R = \begin{cases} \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, $x, y, z, t \in F$, where F is a field of ChF = 2 be a ring of 2x2 matrices

with respect to the usual operations of addition and multiplication.

$$U = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, a \in F \right\}$$
 be an additive subgroup of R . Let $\sigma, \tau : R \to R$ be two

mappings, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix}, \ \tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} t & -z \\ -y & x \end{pmatrix}. \quad \text{Then}$$

$$\begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ 0 & a_2 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & 0 \\ 0 & a_1 a_2 \end{pmatrix} + \begin{pmatrix} a_2 a_1 & 0 \\ 0 & a_2 a_1 \end{pmatrix} = \begin{pmatrix} 2(a_1 a_2) & 0 \\ 0 & 2(a_1 a_2) \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in U \text{ .Then U be a } (\sigma, \tau) - \text{ left Jordan ideal}$$

So, by the hypothesis $[U,U]_{\sigma,\tau} \subset Z$ we can show this condition

$$\begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ 0 & a_2 \end{pmatrix} - \begin{pmatrix} a_2 & 0 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & 0 \\ 0 & a_1 a_2 \end{pmatrix} - \begin{pmatrix} a_2 a_1 & 0 \\ 0 & a_2 a_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$
But this result is

Contradict with the hypothesis $[U,U]_{\sigma,\tau} \neq 0$.

Also, we generalized the above Theorem as below.

Theorem (2.6) :- Let U be a (σ,τ) - left Jordan ideal ,if $0 \neq [U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then $U \subset Z$.

Proof: - By the hypothesis , we get $[(x \sigma(u), u)_{\sigma,\tau}, u]_{\sigma,\tau} \in C_{\sigma,\tau}$, for all $u \in U$, $x \in R$.So, we have $[(x \sigma(u), u)_{\sigma,\tau}, u]_{\sigma,\tau} = [x [\sigma(u), \sigma(u)] + [(x, u)_{\sigma,\tau}, \sigma(u), u]_{\sigma,\tau}$

$$=[(x,u)_{\sigma,\tau}\sigma(u),u]_{\sigma,\tau}$$

Since $[U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$, we have $[(x \sigma(u), u)_{\sigma,\tau,u}]_{\sigma,\tau} \in C_{\sigma,\tau}$ and therefore,

[$(x, u)_{\sigma,\tau} \sigma(u), u$] $_{\sigma,\tau} \in \mathbb{C}_{\sigma,\tau}$, for all $u \in U$, $x \in R$. Also, we have

$$[(x, u)_{\sigma,\tau} \sigma(u), u]_{\sigma,\tau} = (x, u)_{\sigma,\tau} [\sigma(u), \sigma(u)] + [(x, u)_{\sigma,\tau}, u]_{\sigma,\tau} \sigma(u)$$

$$= [(x, u)_{\sigma,\tau}, u]_{\sigma,\tau} \sigma(u) \in C_{\sigma,\tau}, \text{ for all } u \in U, x \in R.$$

Therefore, $[[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau}\sigma(u), r]_{\sigma,\tau}=0$, for all $u \in U$, $x,r \in R$. So,

 $0 = [[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau}\sigma(u), r]_{\sigma,\tau} = [(x, u)_{\sigma,\tau}, u]_{\sigma,\tau} [\sigma(u), \sigma(r)] + [[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau}, r]_{\sigma,\tau}\sigma(u) = 0, \text{ for all } u \in U, x, r \in R. \text{ Also , we have } [(x, u)_{\sigma,\tau}u]_{\sigma,\tau} [\sigma(u), \sigma(r)]_{\sigma,\tau} = 0.$

Also, $\tau(y)[(x, u)_{\sigma,\tau}u]_{\sigma,\tau}[\sigma(u), \sigma(r)]_{\sigma,\tau}=0$, for all $u \in U$, $x,r,y \in R$. Also, $[(x, u)_{\sigma,\tau}u]_{\sigma,\tau}\sigma(y)[\sigma(u), \sigma(r)]_{\sigma,\tau}=0$, for all $u \in U$, $x,r,y \in R$. Then

If $[(x, u)_{\sigma,\tau}, u]_{\sigma,\tau} = 0$ contradiction with the hypothesis. If $[\sigma(u), \sigma(r)] = 0$ for all $u \in U$, $r \in R$, implies that $U \subset Z$.

Remark(2.7):

Also, by the previous example(2.5) we can show the above theorem is not necessary true all the time.

References

- 1. Abdul-Hameed, Kassim., Some results on (σ,τ) -Left Jordan ideals in prime rings. Journal of science-Al-Nahrain Univ. (To appear)
- 2.Abdul-Ruhman hameed and Kassim Abdul-hameed ,Some results on (σ,τ) -Lie ideals in prime rings, Iraqi Journal Of Science, Vol.49, No.1, 2008, pp. 188-191.
- 3. Aydin Neset ,H. Kandamar and K. Kaya , Generalized Jordan structure of Prime rings , Doga Tr.J. of Mathematics Vol. 17 , 1993,pp 251-258.
- 4. Herstein, I.N. On the Lie structure of an associative ring, Journal of Algebra Vol. 14, 1970, pp.561-571.
- 5. Kaya, K., Aydin, N., Ogolbasi, O., Some results for generalized Lie ideals with derivation II, Applied Mathematics E-Notes, Vol. 1, 2001, pp 24-30.