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Abstract:

In this paper, we define the fuzzy contraction mapping in metric space.
Furthermore, we show that the Picard-S iteration method converges to an a-
fuzzy invariant point for fuzzy contraction mapping.
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. Introduction

In the theory of invariant point the contraction is a powerful tool of
mathematics for studying the existence of an invariant point. Banach
contraction method [1] is an incredibly useful tool via the development of
nonlinear equations.
In 2014, Gursoy introduced his new iterative which known as the Picard-S
iterative scheme [2].
Zadeh [7] introduced the concept of fuzzy sets, in 1965.
In 1981, Heilpern [3] achieved an invariant point thm. for fuzzy contraction
mapps. On the other hand, in 2012 Wardowski [6] generalizations Banach by
suggesting the concept of contraction and proving a fixed-point theorem.
In this search, we suggest a definition of fuzzy contraction mapping in metric
space. Also, we prove the convergence of the Picard-S iterative scheme to an
a-fuzzy fixed point when applied to fuzzy contraction mapping.
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2. Preliminaries
In this section, we state some basic definitions, those will be used in next
section to prove the main results.

Definition(2.1),[5]: Let T:X — X be a mapping known as contraction such
that (X,d) is a metric space if there is a real number 0 < & < 1 such that
d(Tx,Ty) < &d(x,y) forallx,y e X (2.1)

Definition (2.2),[2]: Let B a Banach space, and C be a nonempty convex
subset of B and T:C — C be a self mapping. Let {8,}iz: and {y, Jaz, be
sequences of real number in [0,1]For arbitrary u, € C define a sequence
{xn3n=1in C by

u‘n+1 = T:}’n
v, = (1 —B)Tu, + B, Tw,
w, = (1 -y Ju, +y,Tu, n€N (2.2)

The sequence {u,, }5=, is called Picard-S iterative scheme.

Definition (2.3), [4]: Let(X, d)be a Banach space. A fuzzy set D in X is a
fun. from X into [0,1]. If x € X then the fun. value D(x) is known as the
grade of membership of x € D. The collection of all fuzzy sets in X is F(X).
For @ € [0,1]and D € F(X). The notation [D], is called o-level set (or a-cut
set) of D and is defined as follows:

[D]e = {x: D(x) =oc} if e (0,1],

and

[D]o = {x:D(x) > 0}

whenever the closure of the set B in X is denoted by B.

Definition (2.4), [4]: Let Xbe any set and Ybe a Banach space.A
mappingT: X — F(Y) is known a fuzzy mapping over the set Y.
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Definition (2.5),[4]:LetT: X — F(X) be a fuzzy mapping over a Banach
space (X,d).A point u* in X is called o-fuzzy-fixed point of T if
u' € [Tu"] .

Definition (2.6): LetT: X — F(X) be a mapping known as fuzzy contraction
mapping with a: X — (0,1] in a metric space. (X, d)

such that nonempty closed set denotes by [Tu].(, is a subset ofX for all
u € X if there exists constant § € (0,1] such that

d([Tulxqw), [TV]w ) = 6d(u,v) forall w,v € X (2.3)

. Main Results
In this part, in the framework of a Banach space, we state and prove the
convergence of fuzzy contraction mapping (2.3) to an a-fuzzy fixed point as
follows:
Theorem (3.1): Let X be a Banach space C be a non-void closed convex set
such that C is a subset of X andT: C — F(C) be a fuzzy contraction mapping
(2.3). We have a:C — (0,1] such that [Tu].q, is a nonvoid closed convex
subset ofC for all u € C with {u, }i=, is a Picard-S iterative scheme defined
by (2.2) with real sequences {8, }n=1 and {y,, }n=1 satisfying 7=, Br Vi =
Then {u,, }i=; converges to an a-fuzzy invariant point of T.
Proof: Using iterative scheme (2.2) and condition (2.3), we have:
=l = (|1 =y )t + [Tt Jatu) — 7|
=[|(1 — ydup + [Tugl o) — U + Yull” — Yot
=1 = v, + [Tl = + (1= 1)U — Yo [Tu L |
< (1 =yl — @l + ¥ || [T ey — [Tu 1oy |
= (1 =yl —wll + ySlluw, — 2wl
= [1 -y —=8)]lu, —ull

(3.1)
v, —wll = |(1 = B [Tty + BulTWolaiw,) — |
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|1 = B Tn) ) + BrlTWol o,y — [T iy +
Jgn[Tu*]DC{u*] - JBH[TM*]DC{M*] "

<
” (1 = BD|I[Tun) ) — [T Ty || +
ﬁn"[TWn]ar(wn] - [Tu*]DC':u:“]””
= (1-8)6llu, —uwll + B,6llw, —u|

(3.2)
Thus by (3.1) and (3.2), we get:
"un+1 —u’ " = "[Tun]af(un] —u ”
[y s — 7|l = "[Tvn]a{un] - [Tu*]ﬁc(u*]"

< §llv, —u’||

< 62(1 - BIllu, —u’* |l + B,.8% |lw, —u’||

< 67(1—Bllu, —w' |l + Br6% [1— v, (1 — &), — ||
=
8% luy, — uw’ ll — Bn6® llu, — w*ll + Bpé?lu, —u’ll — Brn¥n®!
&) lu, —u”||

= 67[1—B,y.(1 — O], — ||
Repeating this process 1 times, we obtain:

ey — Il < S2@* VTR [1 = Bryi (1 — O)lluy — 'l
= 62{n+ 1]"“1 — "8—{1—5] T BrYi
since 0 <oc< 1and £, B, ¥, = 0 SO 52n+1) o-(1-8)TEL, Brve ,
as n — oo, Which implies that lim,__|lu, —u*|| = 0. Therefore, {u,}i;
converges to u”.
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