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Abstract:

The aim of this work is to study the &-bi-shadowing property on the metric
G-space. We generalized the results to the metric G-space and studied the
chaotic properties with introducing new definition of chaos which we call -
(=, k)-chaotic in a neighborhood of a set ¥ and comparing it with the
definition of Li-York of chaos in &-space. We will study the above
definitions with @-homoclinic orbit and
@-chain components.

The main results that we obtained in this paper, for some conditions, if x is G-
homoclinic orbit of ¢, and ¢ is both @-(a b)-bi-shadowing and &-(a,b)-
periodic bi-shadowing on {x} (when {x} be an unordered set), then any action
¥ which satisfying some conditions is &-(e k)-chaotic on a neighborhood of
{x}. Second, for some conditions, if an action ¢ is G-c-expansive and both
@-(a,b)-bi-shadowing and &-(a,k)-periodic bi-shadowing with respect to an
actionsyp andxis a
&-homoclinic orbit of ¢ contained, then every action i satisfying some
conditions is G-(s k)-chaotic on a neighborhood of {x}. Third, for some
conditions, if € be a @-chain component of an action ¢, and ¢ is both -
(a,b)-bi-shadowing and G-(a,b)-periodic bi-shadowing on a &-chain
recurrent set
@-CR(¢), Then every action ¥ which satisfying some conditions is G-(s k)-
chaotic on a neighborhood of c.
1. Introduction

The concept of shadowing is of great importance in studying and
understanding dynamical systems because it often accounts for the accuracy
of a computer simulation of the system being used. Work on it began to be
developed by many researchers in recent years as an important link for
dynamical systems with stability and chaos. The map with has shadowing
property is assumed to have a true orbit fairly close to each pseudo orbit of
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this map. The researcher who gave the concept of shadowing is Walters in
[1], see more [2,3,4]
Some researchers have evolved the shadowing into the bi-shadowing by
assuming that the true orbit be on another maps under specific conditions.
The researcher who gave the concept of
bi-shadowing is Diamond et al. in [5]. Later in [6,7] the researchers studied
many relations between the bi-shadowing and other concept. Ajam in [8]
introduce types of bi-shadowing concept.
The chaotic behavior of the map on a discrete dynamical system is very
restricted. We present another definition that is more broadly studied and
preserves the concept of chaos map by
Li and Yorke [9].
In this paper we present the generalization of the bi-shadowing property and
Li-Yorke definition of chaos to the &-space. And also introduced the
concepte @-( k)-chaotic in a neighborhood of a set .
2. Preliminaries
Let M, Z, B, and R* be natural, integer, real, and positive real

respectively, and let M,, and Z; be W u {0}, and Z — N respectively.
Let @ be a group, X be a Hausdorff topological space and ¢ be a map. Then
the triple (&, X, ) is called topological transformation group.
Definition 2.1. [10] The map ¢: G x X — X which satisfying:

1. @(g..)is a homeomorphism of for any g € ,

2. @(e,x) = x for all x € X where e is the identity of the group &,

3. i (gl,cp[gg, x)) = cp[gigj, x), for all gy, 8, €6, x e X,
is called an action of a group @ on X. And X is called a G-space.
Definition 2.2. Let @ be a group, then

1- The group @ is called generated by s if () = @ [11].

2- The group & is called finitely generated if a generating set € is finite [10].

3- The set & is called symmetric if for any s € £ then s~* € & [10].

In this paper we let @ be a finitely generated group, X be a compact

open bounded subset of B¢, ¥ be a compact subset of X while X is metric G-
space with metric dl, and

@:G X X — X be an action. And we fix a finite symmetric generating set & of
G

Remark 2.3. For x € X and n € N, we have:
1- By definition 2.1 the image of x by ¢ is ¢(s.x) for s € s.
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2- We denote to the inverse image of ¢ by ¢~*, and the inverse image of x by ¢
IS (sx)=w(s"1x) fors e &,
3- The n-iterate of x by @ is

(s, .. o(s,x)) = 'fP( 5.5 ,I) = p(ns,x) fors€ s,
— —
n—iterate n—items

so we denote to = iterate of ¢ by ¢™ and ¢"(s,.) = @(ns,.) fors € s,
4- The n inverse iterate of x by ¢ is

e(s™ o(sx)) =9 (5_1 :3_1,:{') = @(ns!,x) forse s,
k :
n—iterate n—items

so we denote to n inverse iterate of ¢ by ¢™" and ¢~ "(s..) = @(ns™t,.) for
5 € 5,

Definition 2.4. A sequence x = {x, eX |g € G} is called Gs-orbit for ¢ if
satisfying

Xig =(p[5,xg) fors€ Eand g € G. (1)

Remark 2.5:

1- We can rewrite a Gs-orbit x = {x, € X |g € &} in Definition 2.4 as a sequence
associated with a subset of integer numbers, then a sequence x is became
x={x, EX|n€ 1< Z}, when the length of an interval I < Z is depend on the
members of a group @. We can reformulated the condition (1) as follows
Xp3 = @(8,x,)forn€Z,s €S,

2- A finite G.-orbit x={x, e X |n=0,..,N} for ¢ is called a G- periodic orbit
of period N if x, = x, and x, = x; for j € {1, .., N — 1},

3- An infinite @;-orbit x = {x, € X [n € Z} is called @.-homoclinic orbit, if x,, are
not identical and there exists x, € X such that lim,, .., x, = x, = lim,_,__. x,,.

4- The point x€ X is called a G;-periodic point for ¢ with period = if
@(ns,x) =xand e(ks,x) =xforit<k<n and s € &.

5- Let G-F(¢) be denote to the set of all &-periodic points for ¢ with any period.
Definition 2.6. [10] For é = 0, a sequence y = {y, € X| g € G} is called G;-5-
pseudo orbit for ¢ if satisfying
dl (}’sg,fp(ﬁ,}’g)) = {§,forseSandg e G. (2)

Remark 2.7:

1- As in Remark 2.5 we can reformulated y={y,€Xlne 1< Z} and the
condition (2) as follows d(y,.,, ¢(s,v,)) < §forn€ Z,s € &

2- A finite @.-6-pseudo orbit y={y,eX|n=0,...N} for ¢ is called a G.-
periodic
5-pseudo orbit of period N if d(yvy,v,) < 8.
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3- A G;-6-pseudo orbit y={yv,eXnelcZ} is called a &s-8-pseudo
equilibrium if the v, are identical for all = under consideration.

4- Let 0(¢), 0,(w), O(e.d8) and 0, (e, &) denote to the sets of all finite or infinite
@;-orbits for ¢, @c-periodic-orbits for ¢ of any period, @.-5-pseudo orbits,
and
@;-periodic d-pseudo orbits of any period.

Definition 2.8. Let ¢:GxX =X and v: G xX— X be an actions, the G.-
distance between ¢ and v is given by
d, (@, y) = itég{dl[:gu(ﬁ,x],;&(:a,xj)} fors € &.

Definition 2.9. The action ¢ is called @;-(a,k)-bi-shadowing on ¥ € X if
there exists
0<&8<b such that for any G;-6-pseudo orbit (finite or infinite)
v={y,€¥Inel < I}e O(p ¥,6) and any action ¥:& xX—X satisfying
dy(¢,) =B — & then there exists an G.-orbit x ={x, e X|n € 1 € Z} € O(y, X)
such that
d(x,,v,) < 31[5 + d, [cp,:.,ir]) < ab for all n as define in v.
If ¥ =X, then an action ¢ is called G.-(a,kz)-bi-shadowing.
Definition 2.10. The action ¢ is called G:-(a,I)-periodic bi-shadowing on
¥ € X if there exists 0 < é < b such that for any finite G.-periodic §-pseudo
orbit
v={y, €¥|n=0,...N}€ 0,(p,¥.6) and any action y:G x X - X satisfying
dy(p ) =b -8 then there exists an G-periodic orbit
x={x,€EX[n=0,.. ,N}e 0y, X) of period N equal to that of ¥ such that
d(x,,v,) < al[:ﬁ' + d, [cp,:.,ir]) < ab for all n as define in v.
If ¥ = X, then an action ¢ is called G:-(a,k)-periodic bi-shadowing.
Definition 2.11. [10] An action ¢ is called @-c-expansive in ¥ if for any
infinite orbits
xy € 0(p,¥) either x =y Or sup,.c d(x,.y,) = ¢, and the number ¢ is called a
G-expansive constant for ¢.
Definition 2.12. An action ¢ is called -chaotic in the sense of Li-Yorke if
satisfying
L1. There exists N € N such that ¢ has a &-p-periodic point for any » = N,
p EE,
L2. There exists an uncountable ¢-invariant set s =X containing no G-
periodic points, called a scrambled set, such that
lim sup,,_... d(¢(ns,x),@(ns,¥)) = 0 for every x,y € S with x = y, and for every
x € 5 and any G-periodic point v,
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L3. There exists an uncountable subset 5, of S such that
lim inf, _. d(@(ns, x),@(ns,y)) =0 for every x,y € 5,.

Definition 2.13. Let Z™ be denote to the set of all sequences
b={b, e{1,..,m}: forneZ} which associated with a group &, and let
V ={v, .., v,| v; € X,v; # v;} be an unordered. We used some sequences in Z™
to describe the order in which some disjoint balls of the form
U, ={z eX:d(z,v,) < e;i=1,..,m} are to be visited.

Definition 2.14. Let £ > 0 and k € N, and let ¥ for which max, .. d(x,y) = 2e.
Action ¢ is called @;-(= k)-chaotic in a neighborhood of ¥ if for each finite
subset v ={vy, .., v,,} of ¥ with min,_;d(v,v;) = 2¢ there exists an action
Z:I™ = 0(¢p) such that

S1. For each b={b, €{1,..,m}: forne T} € ™ the &.-orbit
z=Z,(b)={z, € X: forn € Z} satisfies z,,, € U, ,

S2. The action b — Z_(b) is shift invariant (that is a k-shift sh* of b e Z™ is
corresponding to G-orbit (b)),

S3. If be Z™ is Gg-periodic with period p, then the corresponding @;-orbit
z=Z,(b) IS
@-periodic with period kp,

S4. For each nn = 0 there exists an uncountable subset z? of Z™ such that

1
lim sup dl[:..?:lp(a]wzw(h)”) = —¢c forallab €Z],a#b,

mn—oa 2

and lim inf d(z 2(a)

n—o

wZg(b),) <n.forallabeZ].

3- @-Chaotic Behavior with G-Homoclinic Orbit:

The above definition of &-chaotic behaviour are similar to those in the Smale
transverse homoclinic orbit theorem (see Theorem 16.2 in [12]) with
generalize a properties to &-space.

Through the definition we assumed either the uniqueness of the G-orbit z ,(b)
for b € Z™ or a &-continuity of Z_,.

On the physical side, a Definition 2.14 means a G-orbits of an action ¢ seems
to act chaotic if a mathematical calculations accurately is not less than k().
Lemma 3.1.[13] Let X be with the power of the continuum and let § be the
set of sequences s = {s; e X | i € N}. Then for each n > 0 there exists a subset

§(n) of s with the power of the continuum such that
liminf d(s,t,) < n forany s,t € S(n).
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Theorem 3.2. Let x be @;-homoclinic orbit of ¢, suppose that ¢ is both
@-(a,b)-bi-shadowing and G.-(a,b)-periodic bi-shadowing on {x} (when {x}
be an unordered set), and define 8(e) = Zmin{lb, £/5} = 0. Then every bounded
action
: & X X — X satisfying d, (¢,¢) < &(=) is Gs-(s k)-chaotic on a neighborhood
of {x} for any k = k(s), k € N where
k(e) = max{m/|there exist iy € Z,with dl(x,x,) = §(e),i = ipiy+1,...ig+m}. (3)
We must distinguish an orbit x from the unordered set {x}.
Note that: a number k(=) in (3) act a maximal of orbits of an element of a set
{x} that can stay outside of &(=)-neighborhood of a homoclinic point x,.
Proof: Let == 0 be arbitrary with max, . d(x,y) = &, k > k(e), k €N, and
vV ={vy, ... v,}, m>1satisfying min,_; Lﬂl[ui,u}-) = 2e.
Construct an action z,:Z™ — @(y) which satisfying §1 — 54. Let 5 be a subset
of R4, then a set of all open p-neighborhood of s is denoted by ©,(5).
For each v € v with v = x, there can be found m_(v) e Z,, m,(v)€ Z_and a
finite sequence
u=u(v) = {ww) () e e W) -1 b
which are uniquely defined by
u(lp=v, uw); =e(sulv)_y).
for i=—-m_(v)+1,...m.(v)—1
such that
H(lf‘)-m_cz-nrﬁﬂ(& If»(v]m_,_l:rll—l) € Oz ({x.}),  wlv); € Oy ({x,1),
for —m_(v) <i < my(v).
Consider a given integer k > k(=) and a given sequence b € Z™,
Define a sequence w = {w,|n € Z} by
w = {W,Hk}- = It[:b‘}-)u for — m_[u}-) <n<m, [:1:}-) ; U # X,

w, = x, for all othern
Then w is a &z-6(=)-pseudo orbit of .
Hence, by the assumed &;-(a,k)-bi-shadowing of ¢, for any bounded action
with d, (@,9) < §(e), the set Z,(b) of all Gs-orbits z satisfying d(z,,.v, ) <=
for all = is not empty.
Furthermore, by the assumed G:-(a,k)-periodic bi-shadowing of ¢, this set
z,(b) contains a Gs-orbit of minimal period pk if b is Gg-periodic with
minimal period p.
Standard constructions using Zorn's Lemma [14] allow a (single-valued)
selector z,, of the multi-valued action b - z,,(b) to be chosen which satisfies
conditions 51 — 53,
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Indeed, let us denote by Z the totality of single-valued selectors z, which are
defined on subsets of ©(Z) c Z™ and satisfy conditions s1 — §3 and consider
this set as being partially ordered by inclusion of the corresponding graphs

6r(z,) = {(b,zﬂh)] b e D[Zj}.
By the construction every chain Z (that is, linearly ordered subset) of Z has an
upper bound, the graph of which is defined as the union Uz, e Gr(z,).

Hence by Zorn's Lemma there exists a maximal element Z, in the set Z.
Suppose that the strict inclusion ©(z,) € Z™ holds. Then there exist an
element
b, € Z™\ D(Z,). If for some positive integer i the sequence b, is the i **-shift
of a sequence b, € D(Z,) then an action

Z,(b) ifb € D(Z,)
Zo(b) = {Sh‘”‘ Z,(by)ifb = b,
satisfies conditions 51 —53 and strictly dominates Z,, which contradicts the
definition of z..
On the other hand, if the sequence b, cannot be represented as a shift of a
sequence b e D(Z,) then define z,(b) as an arbitrary element from the
nonempty set z,,(b) of all Gz-orbits z satisfying d(z,,,.v,, ) < = for all n, again
the action z, satisfies 1 — §3 and strictly dominates z,, and we arrive again
at a contradiction.
The Lemma 3.1 called that the selected action Z, also satisfies condition s4.
u

The next theorem provides a simple means of locating @-homoclinic
orbits.
Theorem 3.3. Let w= {v; eX|i = 0,..,p — 1} be a G:-periodic 5-pseudo orbit
of ¢ which is G:-(a,b)-bi-shadowing and @;-(a,k)-periodic bi-shadowing on
{w} and G-c-expansive in X. Suppose that ¢ <, d(e(s,v,).v,) <b, forse s
and
2a8 < maxd(v;,v;), a(§+d(e(s,v,),v,)) <¢, forses. (4)

Laj

Then ¢ has a @.-homoclinic orbit x in an open ad-neighborhood of {w}.
Proof: The point v, is clearly a @;-(d(@(s,v,).v,))-pseudo-equilibrium of .
By the assumption that d(e(s,v,).v,) =b and the G.-(ab)-periodic bi-
shadowing there exists a proper &;-equilibrium x, of ¢ satisfying

dix,, vy) < de(s.vy), v5)- (5)

Now consider the bi-infinite sequence ¥ = {v, | n € Z} defined by
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_ (¥a TV for n<0ornz=p,
y= {}’u = vy otherwise,
which is obviously a G:-6-pseudo orbit of .
In view of the inequality & < Iy, there thus exists a Gz-orbit x = {x, | n € Z} in
the
ad-neighborhood of a @;-pseudo orbit y. The elements of this @;-orbit are not
all identical because of the first inequality in (4).
We must show that a &:-orbit x is G.-homoclinic. To this end it sufficies to

establish the limit relationships lim, _, x_, =lim, . x, = x,. Suppose that
lim x, = x, (6)

n—+oa

does not hold. Then there exists a sequence of indices i,, = @ and an =, > 0
such that

uﬂl[:xim,xi) =gy, m=12,.. (7)
Consider a coordinate-wise limit point x* = {x; | n€ Z} of the sequence of
shifted G-orbits
x™ = {xZ a0 )
defined by x™ ==x, forn=0,12,... Then (7) implies

dl(xg,x,) = &. (8)
Now every sequence x™ is an G-orbit of ¢, so x* is also a &;-orbit of ¢
because  is an action. Furthermore, x* satisfies the inequalities

dx:,x, ) <c (9)
for all » because of (5) and the second inequality in (4). The inequalities (9)
and (8) contradict the G-c-expansivity, so the limit (6) must be exist.
The proof of lim, ., x_, = x, is similarly. m
Corollary 3.4. Let ¢ be G-c-expansive on ¥ with ¢ = 9/, and both @:-(a,b)-
bi-shadowing and G.-(a.k)-periodic bi-shadowing on ¥ with respect to
bounded actions ¥: & x X — X and x be a @.-homoclinic orbit of ¢ contained
in Y and define k(e) by (3) and 5(e) by
() = %min{[:-),g,-"al}.
Then every action ¥ satisfying d,(e.¢) <&(s) is Gz-(e k)-chaotic on a
neighborhood of {x} for any positive integer k = k(=).
4- z-Chaotic Behavior with G-Chain Components:
During the study of the chaotic behavior with Chain Components of maps,
Park and Lee in [15] presented a number of concepts in chain recurrent in the
metric space, In what follows we generalize it to a @-space.

Definition 4.1. A point x € X is called @;-6-chain recurrent for ¢ if there
exists a finite
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@5-8-pseudo orbit {x, | n=0,..,n} of ¢ with x, = x, = x, that is connecting x
with itself.

A point x € X is called @;-chain recurrent for ¢ if for any & = 0 there exists
a finite

@;-5-pseudo orbit connecting x with itself.

Let G.-CR(¢) denote the set of all @;-chain recurrent points of -

Note that the @;-chain recurrent set G.-CR(¢) is compact and e-invariant.

We define a relation ~ on G;-CR(@) by x ~ v if for any & = 0 there exist two
finite

G@5-3-pseudo orbits x and y such that x is connecting x with ¥ and y is
connecting ¥ with x. Two such points are called G;-chain equivalent. It is an
equivalence relation. The equivalence classes are called the &;-chain
components of ¢-

Now we show that if an action ¢ is G:-(a,k)-bi-shadowing and G:-(a b)-
periodic

bi-shadowing on the &.-chain recurrent set G.-CR(®) then all nearby
perturbations of an action ¢ behave chaotically on a neighborhood of each
@;-chain component of ¢ whenever it has a fixed point.

Let ¢ be a Gz-chain component of ¢, and x and v be any two points in €. For
any & =0, we denote ©(x,y, &) the set of all finite &@;-6-pseudo orbits in G-
CR(¢) from x to .

Note that we can choose G:-d-pseudo orbit from x to ¥ which belongs to G-
CR(¢).

For any x € ©(x, y,8), we let card(x) be the cardinal number of the set %, and
card;(x,¥) = inf {card(x) | x € ©(x,v,8)}.

Lemma 4.2. Let € © X be a G;-chain component of ¢. For any & = 0, we can
choose a positive integer N = N(&) such that

sup{card;(x,v) | x,y € C} = N.

Proof. Suppose not, then there exists &, = 0 such that for any N = 0,
sup{card;(x,v) | x,v € C} = N.

Hence, we can select (x,y,) €c€xc satisfying cards (x,,)=n and
cards_(x,,,) < cards (%, ¥,+,) forall = 1,2,... Since € is compact, we may
choose subsequences {x,, } and {y, } of {x,} and {3}, respectively, which are

convergent; say

lim x, = x,and lim
k—oa ’ k—roa

Since ¢ is compact, then x,y € €.
To complete the proof, it is enough to show that card;_(x,y) = oo,

}T”k =y.
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Suppose that card;_(x,y) is finite; say card;_(x,y) = L. Then there exists a G-
8y-pseudo orbit x = {v,, ... ,v,} in Gs-CR(e) satisfying v, = x and v, = y. Then
we can choose a sufficiently large integer a = L such that

X ={Xq Var e s Vg, Vo)

becomes a @;-5,-pseudo orbit in @;-CR(¢). Hence we have

X € O(x_, v, 8,), card(x) = L, and cards_ (x,.¥,) < L.

However this contradicts to the fact that

cards (x,,¥,) Za=L.m

Theorem 4.3. Let € be a &;-chain component of an action ¢ on X. Suppose ¢
is both

G-(a,b)-bi-shadowing and &.-(a,b)-periodic bi-shadowing on the &.-chain
recurrent set @.-CR(g), and let =0 be arbitrary with &< diamc. Let
r(£) = min {E,:—ﬂ,%}. Then every action ¢: G x X —» X with d, (e.¢) <r(2) is G.-
(e k)-chaotic on a neighborhood of ¢ for any k = 2N(r(£)) if € bas a fixed
point, where N(r(<)) is an integer corresponding to the number r(s) as in
Lemma 4.2.

Proof. Let = 0 be arbitrary with ¢ < diam ¢, and let an action y: G x X — X be
satisfying

kb
dy (e, ) < r(e), where r(g) = min {E,i,—}.
2a 2

Let N(r(=)) be an integer corresponding to the number (<) as in Lemma 4.2,
and let k =0 be a fixed integer with k = 2N(r(2)). Let {vy, ..., v,,} be a finite
subset of ¢ with

H.Li?ﬂ[vp U_;.-) = 2e.

Now we are going to construct an action Z,:Z™ - ©(y) which have the
properties 51 — s4. For each sequence b = {b,|n € Z} € Z™, we can associate a
sequence

V) = vy Vo)

in the product space.

For each integer i € Z we may find a Gs-r()-pseudo orbit x; in G;-CR(¢) from
v,, 10 v,  With card(x,) = k. To show this, we let » € ¢ be a fixed point of ¢.
Since

sup{card, ) (x,¥)| x,¥ € €} < N(r()),

we can choose a Gs-r(e)-pseudo orbit v, in G;-CR(@) from v, to p with
card(y,) < N(r(2)), and a Gz-r(e)-pseudo orbit y, in Gz-CR(¢) from p t0 v,
with card(y,) < N(r(s)). By connecting two &.-pseudo orbits v, and y,, we
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can construct a

@-r(e)-pseudo orbit x; in G.-CR(¢) from v, to v, ~With card(x;) = k.

Let x(b) = {....x_,,x4,x,, ...} = {x,In € Z}. Then x(b) is a &;-r(=)-pseudo orbit
of ¢ in @:-CR(¢). Since ¢ is G;-(a,b)-bi-shadowing on G:-CR(¢) and

r(e) +dy(e.¥) = 2r() < b,

there exists a @;-orbit z(b) = {z,, = z,In € Z,g € & } of ¥ such that

d(x,.z,) < a(r(e)+d,(p.¢)) <2ar(s)<e

forall neZ.

Let b= {b,} be a &.-periodic sequence in Z™ with period p. Since ¢ is G-
(a,B)-periodic bi-shadowing on G;-CR(¢), by the same techniques as above,
we can select a G;- r(=)-pseudo orbit x(b) of ¢ in &.-CR(¢) with period pk
and a proper Gs-periodic orbit

z(b) = {z, =z,ln = 0,...,pk —1; g € G } of ¥ with period pk and d(x,.z,) < ¢
foralln=o,..,pk —1.

For each b € Z™ the set z,,(b) of all Gz-orbits z(b) = {z, =z,In€Z g € G } Of
W satisfying d(x,,.v, )< e neL

is not empty. Moreover the set z,(b) contains a @s-orbit of ¥ with period pk
ifbisa

G5-periodic sequence in Z™ with period p.

By our construction, we can consider the totality Z of the single valued
actions

z,:D(Z) - 0(y) satisfying the conditions 51 — 53, where D(Z) is a subset of
Z™ such that z is defined on it. Consider the set Z as being partially ordered
by inclusion of the set corresponding graphs:

Gr(z,) = {[b,z,‘b(h)) Ibe D(Z)}.
Then every chain § of Z has an upper bound, and the graph of which is
defined as the union Uz, - Gr(Z,). By the Zorn's Lemma, there exists a

maximal element Z, in Z. Then we can see that D(z,) = Z™.

Suppose not. Then there exists a € Z™\ D(z,). If a = shi(c) for some positive

integer i and some ¢ € D(Z,) then the action Z,: D(Z,)U{a} = ©(y) defined by
Z,(b) if beD(zZ,

Zo(b) = {Sh'”‘ Z(c) if b= a[ )

satisfies conditions $1—53 and D(zZ,) € D(Z,), which contradicts the

definition of z, .
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Similarly if the sequence a cannot be represented as a shift of a sequence
b € D(Z,) then we can construct an action z,: D(Z,) u {a} — @(y) satisfying
conditions §1 — §3. This means that ©(z,) = ™.

The fact that the action z,: Z" — ©(y) satisfies the condition 54 follows from
Lemma 3.1. =
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