Evaluation of Antimicrobial Activity of Saccharomyces boulardii against Clostridium difficile In Vitro

Dr. Luma Yousif Mehdi, Dr. Muna Turkey AL-Mossawi

Abstract

Clostridium difficile infection (CDI) has become a significant threat to public health. Although broad-spectrum antibiotic therapy is the primary treatment option for CDI, its use has evident limitations. Probiotics have been proved to be effective in the treatment of CDI and are a promising therapeutic option for CDI. In this study, strain of Saccharomyces boulardii was evaluated for their anti-C. difficile activity. The antibacterial activity of the standard isolated yeasts (biocodex, France) against pathogenic bacteria C. difficile in vitro was determined by Well's Diffusion method, the isolated yeast showed antibacterial activity against tested bacterium, the highest diameter of inhibition zone was (11 mm). The study aimed to use the yeast Saccharomyces boulardii as probiotic for the prevention and treatment of diarrhea and colitis associated with antibiotics. These results may provide a basis for alternative therapies for the treatment of C. difficile-associated gut disorders.

Keyword: C. difficile, Saccharomyces boulardii, in-vitro.

Introduction

Clostridium difficile (C. difficile) infections (CDI) are a global clinical concern and are one of the leading causes of nosocomial outbreaks (McFarland, 2015). CDI is dramatically increasing in both the prevalence and clinical severity as a cause of antibiotic- and hospital-associated diarrhea in worldwide (Darkoh et al., 2015; Surawicz, 2015). Cases have been more severe with more complications, deaths, and higher healthcare-associated costs with the emergence of a hypervirulent strain of C. difficile and the increasing prevalence of community-acquired CDI among healthy patients without traditional risk factors, the epidemiology of C. difficile has been evolving (Vindigni and Surawicz, 2015).

Studies of CDI prevention and probiotics have been largely limited to CDI being evaluated as a secondary outcome of AAD studies, leading to
Evaluation of Antimicrobial Activity of Saccharomyces boulardii against Clostridium difficile In Vitro

Dr. Luma Yousif Mehdi , Dr. Muna Turkey AL-Mossawei

under powerment for CDI outcomes (Johnson et al., 2012) . Probiotics are effective in preventing AAD and may also be a beneficial strategy for the treatment of CDI (McFarland , 2015).

By the World Health Organization, probiotic is defined as “live microorganisms, when administered in adequate amounts, confer a health benefit on the host(Hoffman et al., 2008; Oldfield and Johnson,2014). Probiotics containing one or several living beneficial microbes have been a addition to antibiotic therapy, and the benefits of probiotics are multiple mechanisms of action on pathogens, benefits to host immune system, survival to host colon, no drug interaction, and low risk to the patient and safe. (Kelesidis and Pothoulakis,2012; Goldingberg,2013).

Saccharomyces boulardii has been found to support vancomycin therapy (McFarland ,2005). The mechanism by which S. boulardii inhibits toxin binding has been determined to be the production of a protease, which digests the toxin receptor in gut mucosal cells (McFarland ,2006). The best studied probiotic agents are Saccharomyces boulardii and Lactobacillus. Several studies showed that the mixtures of probiotics can be useful in the treatment and prevention (. McFarland ,2010).

S. boulardii shows promise for C. difficile infection control by several levels: produces a 54-kDa serine protease that directly degrades toxins and also directly destroys the colonic receptor site (Pothoulakis ,2010) increases the immune response(Buts , 2009) in different animal models respond to this yeast. The S. boulardii possesses many properties that make it a potential probiotic survives transit through the GI tract, it's growth temperature optimum is 37°C both in vitro and in vivo, it inhibits the growth of a number of microbial pathogens (AL-Samarraie,2013;AL-Zubaidy and Khidhr, 2014).

Since 1989,patients with recurrent C. difficile diarrhea treated with S. boulardii showed improvement.(Surawicz et al.,1989;Buts et al., ,1993; Hassett et al.,1995; Popoola et al.,2000; Surawicz and Macfarland ,2000) and found to be effective for primary prevention of CDI and recurrences(McFarland,2015; Mehdi and Al-Mossawei,2016),by effective combination of probiotic and antibiotics(McFarland,2010).

Materials and Methods

C.difficile isolate:

C. difficile was isolation and identification from stool samples was collected from hospital in Baghdad previously by :1-selective media(CCFA) Cycloseren-Cefoxitin-Fructose Agar (Sigma Aldrich,UK) . 2-Gram stain ,Malachite green for spore,Api20A Kit(BioMerieux,USA). 3-
Evaluation of Antimicrobial Activity of Saccharomyces boulardii against Clostridium difficile In Vitro

Dr. Luma Yousif Mehdi, Dr. Muna Turkey AL-Mossawei

detection of two toxins A&B in stool samples by ELISA Kit (primier toxin A&B from Meridian Bioscience ,USA), according to (Mehdi and Al-Mossawei,2015). Yeast Strain Saccharomyces boulardii from company Biocodex(France).

Antimicrobial activity of S.boulardii against C.difficile (in vitro)

The standard isolated yeasts (biocodex, France) were inoculated in Yeast Extract Glucose peptone (YEGP) (Forbes et al., 2007; AL-Samarraie,2013), and incubated at 37°C for(18-24) hr, 50ml of the same medium was inoculated by 5ml of yeast suspension and incubated at 37°C for (18-24) hr, three different concentration of yeast (1x10^7, 1x10^8, 1x10^9) CFU/ml were used to determine the best concentration. C.difficile isolate showed that it was resistant to many antibiotics (Mehdi and Al-Mossawei,2015) and cultured in nutrient broth at 37°C under anaerobic incubation for (18-24) hrs, Plates were inoculated by 0.1 ml of C.difficile, left to dry for 15 minutes at 37°C, (3-4) wells in each plate (with diameter 5mm) were done using Cork Borer and filled with 0.1ml of yeast suspension, the plates were incubated for (18-24)hrs under anaerobic at 37°C then the inhibition zones were measured (Izgu et al., 1997).

Results and Discussion

The antibacterial activity of the yeasts against pathogenic bacteria in vitro was determined by Well’s Diffusion method. yeasts showed antibacterial activity against selected local C.difficile isolate that given resistance to many antibiotics used in sensitivity tested, the higher diameter of inhibition zone was (11 mm) at concentration of yeast 1x 10^8 CFU/ml and 1x10^9 CFU/ml, while lower inhibition zone at concentration of yeast 1x10^7 CFU/ml was (9mm),(Qamar et al.,2001; Mehdi and Al-Mossawei,2016). The previous study showed that S. boulardii has ability to inhibit bacteria that causes diarrhea by release of certain antimicrobial metabolites,(Neelayadatchi et al.,2012; AL-Zubaidy et al.,2014).

Previous studies (Castagliuolo et al.,1999) illustrated it secretes a 54-kDa protease, that had been degraded toxins A and B secreted from C. difficile and inhibit their binding to receptors along the brush border, leading to a reduction in the enterotoxic and cytotoxic effects of C. difficile. (Johnson et al., 2012).
Evaluation of Antimicrobial Activity of Saccharomyces boulardii against Clostridium difficile In Vitro ..
Dr. Luma Yousif Mehdi , Dr. Muna Turkey AL-Mossawei

References
Evaluation of Antimicrobial Activity of Saccharomyces boulardii against Clostridium difficile In Vitro

Dr. Luma Yousif Mehdi, Dr. Muna Turkey AL-Mossawei

Evaluation of Antimicrobial Activity of Saccharomyces boulardii against Clostridium difficile In Vitro ...

Dr. Luma Yousif Mehdi, Dr. Muna Turkey AL-Mossawei

Well's Diffusion method

Saccharomyces boulardii

Clostridium difficile

Dr. Luma Yousif Mehdi

Tقييم استخدام خميرة مضاد

Clostridium difficile

Dr. Luma Yousif Mehdi

كلية الدراسات الصحية والطبية Ibn -Gazzoud الجامعة التقنية الوسطى

كلية العلوم للبنات الجامعة بغدادقسم علوم الحياة

الخلاصة:

اصبحت عدوى المӨطثة العسيرة حذگراً كبيرة على الصحة العامة، على الرغم من أن العلاج بالمضادات الحيوية واسعة النطاق هو خيار العلاج الرئيسي، واستخدامه له حدود واضحة. فقد أثبتت المعكزات الحيوية فعاليتها في العلاج، في هذه الدراسة تم تقييم النشط المضاد للبكتيريا لسلالة قياسية من خميرة S. boulardii (biocodex, France)

Well's Diffusion method

S. boulardii

Clostridium difficile

Dr. Luma Yousif Mehdi

كلية الدراسات الصحية والطبية Ibn -Gazzoud الجامعة التقنية الوسطى

كلية العلوم للبنات الجامعة بغدادقسم علوم الحياة

الخلاصة:

اصبحت عدوى المӨطثة العسيرة حذگراً كبيرة على الصحة العامة، على الرغم من أن العلاج بالمضادات الحيوية واسعة النطاق هو خيار العلاج الرئيسي، واستخدامه له حدود واضحة. فقد أثبتت المعكزات الحيوية فعاليتها في العلاج، في هذه الدراسة تم تقييم النشط المضاد للبكتيريا لسلالة قياسية من خميرة S. boulardii (biocodex, France)