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Abstract

In this paper, we give first the general meaning and importance of partial

differential equations, with stating some known types of the second-order
linear partial differential. Furthermore, we show the classification to the
associated types of initial-boundary conditions.
Next, we will use separation of variables method to find a formula for the
analytical solution of the heat equation in one-dimensional space. Finally,
we compute the numerical solution of an initial-boundary problem of the
heat equation in one-dimensional space, using Euler Explicit and Implicit
finite different methods.

1- Introduction and Background

Many physical and engineering problems, mathematically, can be
modeled in the form of partial differential equations. Partial differential
equation describes practically a useful phenomenon such as transport-
chemistry problems of the direction-diffusion-reaction type. Also, such
types of PDE play an important role in the modeling of the atmosphere,
ground water and surface water.

Most physical phenomena in the domain of fluid dynamics, electricity,
mechanic, optics, and heat flow can be modeled in general as linear,
nonlinear partial differential equations.

Next, we will give a definition to partial differential equations, and we will
state some known types of second order partial differential equations.
Furthermore, we will give a classification to the types of initial-boundary
conditions.

Definition (1 -1) [2]

Differential equation is an equation involving a function and some of its
derivatives from which this function is to be determined. Differential
equation which involves functions defending only on one variable is called
ordinary differential equation (O D E), while the differential equation
which involves a function that depends on several variables is called partial
differential equation (P D E), see [1,2,3,4,5].

A few well — known second order linear partial differential equations

The general form of second order linear partial differential equations in
n-dimensional-space with constant coefficients takes the forms:
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For notational simplicity we may refer to the partial derivatives as follows:
R RV VIR i
ot dx 0x?

Examples:

(1) Heat equation in one dimension: u; = ku,,

(2) Heat equation in two dimensions:u; = Uy, + Uy,

(3) Laplace’s equation in polar coordinates u,, + %ur + %ugg =0

(4) Ware equation in three dimensions: u, = Uy, + Uyy + Uy =0
(5) Telegraph equation: u;; = u,, + au; + B
Types of Initial and boundary condition:

In order to obtain a unique solution to equation (1 — 1) we need to
impose certain conditions associated with equation (1 —1). Equation (1 -
1) with certain conditions may be further classified as initial valve or
boundary value problems. In the first case, at least one of the independent
variables is defined in an open region. And in the second case the region is
closed for all independent variables and conditions are specified at all
boundaries.

In general initial — boundary conditions for PDE are divided into three
types, [2].
(1) Dirichlet conditions:

The value of the dependent variable u is given at fixed values of the
independent variables, that is u(x,t) = g(x,t)ondD,  where g are
given function.

(2) Neumann conditions:

In this case the derivative of the dependent variable is given as a

constant or as a function, of the independent variables, that is

du(x,t)
Fra G(x,t) on oD

(3) Cauchy conditions:

A parabolic partial differential equation that has a combination of both
Dirichlet and Neumann conditions on the boundary of D, ¢ D, is said to
have a Cauchy conditions.

2- Analytical Solutions of Heat Equation
The heat equation with n space variables is the following
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%: CZAu(x, t) + h(x,t), (t>0,x €R")

Heat equation is a special case of a class of equations called parabolic type
equation. They model heat conduction, etc.
In this section, we will study the solution of the case when n = 1, using
separation of variables method.
Overview of separation of variables:
Separation of variables looks for simple type solution of the partial
differential equation of the from
u(x,t)= X ()T (t),
where X (X) is some function of x and T(t) is some function of t. The
solutions are simple because any temperature u(x, t) of this form will
retain its basic shape for different values of time t . see the following figure
(Graph of X (x)T(t) for different value of t).

u(x,0) =T(0).X(x)
u(x,l) =T(1)X(x)
u(x,2) =T(2)X(x)

X

0 1

The general idea is that it is possible to find an infinite number of these
solutions to the partial differential equation (which, at the same time, also
satisfy the boundary conditions). These simple functions
u,(x, t) = X,(x)T,,(t) (Called fundamental solution) ,
are the building blocks of our problem, and the solution u(x, t) we are
looking for, is found by adding the simple fundamental solutions
X, (x)T,(t) insuch away that the resulting sum
Yme1 Ay X, ()T, (t), and satisfies the initial conditions.
In as much as this sum still satisfies the partial differential equation and
the boundary conditions, we now have the solution to our problem.
Using separation of variables to solve heat equation:
STEP 1 (finding elementary solution to the partial differential equation)
We wish to find the function u(x,t) that satisfies the following four
conditions:
Partial differential equation
U =a%Uy, , 0<x<1 0<t< o
Boundary conditions
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u(0,t)=0
{u( 1,t)=0
where 0 < t < o
Primary requirement
u(x,0) = @ (x), 0<x<1
To begin , we look for solutions of the form wu (x,t) = X (x) T (t) by
substituting X (x ) T (t) into the partial differential equation and solving
for X (x)T(t).
Making this substitution gives
X)T'(t) = a?X"(x) T (t)
Now, here is the part that makes all this work: if we divide each side of this
T'(t) X" (x)
a?T (t) X (%)
And obtain what is called separated variables, that is, the left side of the
equation depends only on T and the right side, only on X. As much as x
and t are independent of each other, each side must be a fixed constant (say
K); we can write

T'(t) X'

a?T (t) X (x) =k

or

T'—ka?’T =0

X'—kX=0
So now we can solve each of these to OPEs, multiply them together to get a
solution to the partial differential equation (note that we have essentially
changed a second — order partial differential equation to two ODES).
However, we now make or important observation, namely, that we want
the separation constant, k to be negative (or else the T(t) factor doesn't go to
Zero as t <co) . With this in mind, it is general practice to rename k =
— A%, where isnon-zero —A? is guaranteed to be negative), calling our
separation constant by its new mean, we can now write the two ODEs as
follows:

T'+ a?2’T =0

X"+ 22X =0
We will now solve these equations. Both equations are standard type ODESs
and have solution

T (t) = Ae*®*t (A an arbitrary constant)

X(x) = A sin (Ax) +B Cos (Ax) (A, B arbitrary)
And hence all functions.
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u(x, t) = exp( — A%2a?t)[A sin (Ax) + B Cos (Ax)]
(with A, B and A arbitrary) will satisfy the partial differential equation.
U =a*u, , 0<x<1 0<t<o

At this point, we have an infinite number of functions that satisfy the
partial differential equation.

STEP 2 (finding solutions to the partial and the Boundary conditions).

We are now to the point where we have many solutions to the partial
differential equation but not all of them satisfy the BCs or the priming
requirement. The next step is to choose a certain subset of our current top
of solutions.

u(x, t) = exp( — A% a?t)[A sin (Ax) + B Cos (1x)]
That satisfies the boundary conditions

u@,t)=0, wu(,t=0
To do this, we substitute our solutions into these BCs, getting
u(0,t) =Be™¥¥t =0 =B=0
u(1,t) =Ae ¥t sin) =0 = sind =0
This last B.Cs. restricts the separation constant from being any non-zero
number, it must be a root of the equation sin A=0 .

In other words, in order that u (1,t) = 0 it is necessary to pick

A= +n,+2m+ 31 ..

Ap=dnmr n=1,23..

3- Numerical Solutions of Heat equation

If we use finite difference operator to approximate the partial
derivatives, space or time, then the continuous formulation of the PDE is
transformed to a discrete formulation and such process will introduce or
error called the truncation error. This, applying finite difference
approximation to the one and two dimensional PDE, will establish one and
two dimensional network girls.

In this section, we will use the finite difference methods (explicit,
implicit) to find the numerical solution of an initial-boundary problem of
heat equation.

A finite deference scheme, to a given PDE, is said to be convergence if
the numerical solution tends to the exact solution as the discretization of
the space and time steps tend to zero.

Finite difference methods for finding the numerical solution of one
dimension linear second order parabolic PDE:

The general from of second order linear parabolic partial differential
equation, in one dimensional, takes the from:

Mat) TE +bx ) Zrc(xu, (31

at dx?
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where a(x,t) > 0 "(x,t) € Rx[0,T], and
c(x,t) <0.
If we put a(x, t) = where A> 0,
and b(x,t) =c(x,t) =0 Vx € R, ¥Vt € (0,7
Then we will consider the one-dimensional PDE (Heat Equation) which
has the form

du(xt) 4 0%u(xt)

at A 9x2 (3-2)

In order to use finite difference replacement of equation ( 3-2), the region
to be examined is covered by a rectilinear grid with sides parallel to x —
axes and t — axes , with h and k being the grid spacing in the x and t
directions respectively and the grid points ( x; , t, ) are given by x; = ih | t,
=nK where 1, n are integers such that nK < T and 1 =n = 0 at the origin .
Also, the functions satisfying the difference and differential equations at
the grid points X; = ih, t, = nK are denoted by U*and u;'respectively.

If we assume that u (x,t) is continuous with sufficient continuous
derivatives, then we can use Taylor's expansion to compute the first and
second space derivatives of u at (X;, t,) and thus we obtain different types
of approximation (see [2]]) which are:

(1) Forward difference formula
ou N 1
ol =Rl —uD + T (39
where
. ho?u(x,t)

Ti Z—ETZO(}O xlSHle+h
Is a local truncation error. Note that we say that this error is of order h, E =
0 (h), means | E | < gh where g is appositive real number.

(2) Backward difference formula
ou N
el PR CHES T B VU €
where
n_ Eazu(e +t,)
L2 dx?
(3) Centered difference formula
From equation (2 — 3) and (2 — 4) we get
Ju N 1
o | = on (Uiauty) + T (3-5)

ox "1
2 33
where T{‘z—%% = 0(h?) xi—h<0<x;+h

The finite difference approximation of second space derivative of u at (x;,
t,) is given by
% n _ 1

T = Lup, 2wl TR (36)
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2 34
where Th=— =225 = 0(n?)  x;—h<O<x+h

we will consider the numerical solution of the PPDE, equation (3-2), by
using three types, equation (3-2), by using three types of finite difference
method which are explicit method, implicit method.
Euler Explicit method

An explicit finite difference method involves only grid point at the
advanced time level.

In order to drive a formula for this method we will use Taylor
expansion to u(x,t + k) about u (x, t) and thus we get.

u(lx,t+k)= (1+k -+~ kzat2 +...)
= exp(k —)u(x t) (3-7)

From equation (3-3), T"AF , we have
2

u(x,t+k)=exp (Ak %) u(x,t)
If we put x = ih and t=nkand u (x, t) =uj*, then we gave
"*1-exp(XK )u (3-8)
we apprOX|mate the second space derivative, in the last equation, by using
center difference formula, we have.
u™t =1+ ArsZ]ul* + 0(k?), wherer = hL

l
Using U[* as an approximation value to u;* , we get
UMttt = (1= 22U + )Lr(UlH +UM) (3-9)
v,=1,2,3..m-1 and m—h .
The system of linear equation (3 — 9) can be put in matrix from as:
UMttt =1+ ArH) U™+ z (3-10)
Where U™ = [Ul',UY, ...,U%_,]" is the vector of numerical solution of
equation of (3-2) at time t = nk and 1 is the identity matrix of order (m-1),
H is the tri-diagonal (m — 1)x(m — 1) matrix given by

-2 1 0
p=| 1-2 1
0 1 -2

And Z is vector of boundary condition of order (m-1) x 1, its elements are
Z = Ar[U,,0,..0,U,,]
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Euler Implicit method

Although the use of explicit method computationally easy to use the
time step k in necessarily to be very small and mast satisfy the stability
condition.

0< 1 <1
_7'_2

Therefore we need to use implicit method which is stable for infinite values
of r.
From equation (3 — 8) we have

62
exp(-kk@)u}1+1 =ul
If we approximate the second derivative in the last equation by using

center difference formula, and U;* as an approximate valueto uj* ,then
we get
[1—ArsZ2luttt =0 i=12,.m—-1, m=%

Thus (1 + 2Ar)UM — Ar(UA + UMY = UF (3-11)

The last formula is called the backward difference scheme or (implicit

method). The system of equation in (3 — 11) can be put in matrix from as:

(1—-ArH)U™t = U™ + 2 (3-12)
Where the two matrices I, H and the two vectors and are given in equation
(3-10).

4- Numerical Results and Discussion
In this section, we will briefly discuss the numerical results of using:
different types of finite difference method to find the numerical solution of
Heat equation in one dimensional-space, these F.D. methods are:
1-Explicit method.
2-Implicit method
Moreover, we will point out some conclusions based on our analytical and
numerical results.
Numerical solution of a given problem (P1):
Consider the following initial-boundary problem of heat equation (3-

2) in one dimsensional-space:

ou 0%u
= 32 0<x<1,t>0 ,»>0

where the initial and boundary conditions are given as
u(0,t) =u(l,t) =0, t >0
u(x,0) = sin mx
by the results of section 2, The exact solution of the above problem has the
form  u(x,t)=e ™ sinnx (4-1)

To find the numerical solution of the above problem, we will using
Euler explicit and Euler implicit finite difference methods which were
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illustrated in section 3.

We will consider the problem with different value of the grid space in

X — Direction h, gird time k, and A.

It is clear that the exact solution, u (X, t), will approach zero as

A and t increase. Thus it is difficult to compute the solution (4 — 1).

In tables (1) and ( 2 ) we present the numerical solution (with different
values of h,kand A ) for the problem (p;).

It is clear that as A and k increase, with decreasing h, the salability
1

condition 0 <Ar < 5
for the explicit method is violated and thus we have an inaccurate
numerical solution.

However, this is not the case for implicit methods where such methods are
classified as unconditionally stable.

In table (3) we present the absolute error bounds, with different values of
h, k and A, for the above problem (p;), compering the exact solutions with
the numerical solutions . Also we conclude that as A and k increase with
decreasing h, the error bounds increase for all the above methods, which is
an indication for a stability problem.

All the numerical solutions have been computed with using Matlab
codes. Next, we state the Matlab codes of Euler Explicit and implicit
methods.

Euler explicit Method Code

numx =41;  %number of grid points in X

numt = 2000;  %number of time steps to be iterated over
dx = 1/(numx-1) ; t (1)=0;

u = zeros ([numx, numt]); uex = zeros ([numx, numt]);

x = 0: dx: 1; %vector of x values, to be used for plotting
%t =0: dt: dt*(numt);

y=10%*sin (pi*x); %B=zeros ([numt-1, numt-1]); u (:, 1) =y
u (1, :)=0 ;u(numx,:)=0;

for j = 1: numt-1

dt=min((dx"2)/2,dx”(1/10 O)/norm(u (:,})) ) ;

r=dt/ (dx"2);

E () =r;

t( + D=t{)+dt;

for i=2: numx-1
u(i,j+D)=>-2*r)*u(i,j)+r*u(i+l,j)+rxu(i-1,j);

end

end

u; X;
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Euler Implicit Method Code

numx =21;  %number of grid points in X

numt =120; %number of time steps to be iterated over
dx = 1/ (numx-1);

u = zeros ([numx-2, numt]);

x = dx: dx: I-dx; %vector of x values, to be used for plotting
%t =0: dt: dt*(numt);

y=20%*sin (pi*x);

t(1)=0; u(:,H=y'

for j =1:numt-1
dt=min((dx”2)/2,dx6(1/100)/norm(u(:,j)));

r=dt/ (dx"2);

E@)=r,

t(j+1)=t(j)+dt;

ucl, j+I) = (I-2*r)*u(lj)+r*u(2.);

for i=2:numx-3

u(i,j+1) = (I-2*r)*u(i,j)+r*u (i + 1,))+r*u (i-1,j);

end

u(numx-2,j+1)=(1-2*r)*u(numx-2,j)+r*u(numx-3,j); end
A=zeros ([numx-2, numx-2]); for i=l: numx-2

For 1=1: numx-2 if i==j

A (i, ) =I+2*r;

if jJ<numx-2 A(i,j+1)=-r; end

ifj>1

A(l,j-1)=-r;

end

end

end

end

uimp (:, 1)=u (:,1); for j =2:numt

z=uimp (:,J-1); x0=u(:,j) ; uim=A\x0; uimp (:,j)=uim’
end

Table (1): Comparison between the numerical solutions of problem (P1), with A=I,
using Euler explicit and implicit method

Step Lengthand, Timet u(0.5,t)
A U(0.25,1) .
Euler Euler Time t - Euler
e . C Euler explicit . g
explicit implicit implicit
h=0.25 k=0.0104 0.0104 0.6410 0.6396 0.0104 0.9062 0.9045
=1
Ar=0.1664 0.0208 0.5769 0.5766 0.0208 0.8152 0.8149
h=0.25 k=0.0052 0.0104 0.6391 0.6387 0.0104 0.9036 0.9028
=1
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Ar=0.083 0.0208 0.5764 0.5762 0.0208 0.8148 0.8146
h=0.125 k=0.0104  0.0104 0.6416 0.6409 0.0104 0.9104 0.9098
A=1
Ar=0.6656 0.0208 0.5807 0.5788 0.0208 0.8198 0.8187
Exact solution 0.0104 0.6381 0.0104 0.9024
A=1 0.0208 0.5758 0.0208 0.8144

Table (2): Comparison between the numerical solutions of problem (P1), with 2,
=5, using Euler explicit & implicit methods

Step Length and| Timet u(0.25,t) Timet u(0.5,1)
A Euler Euler Euler Euler
explicit implicit explicit implicit
h=0.25k=0.0104 | 0.0104 | 0.4297 0.4244 0.0104 0.6056 0.6040
=5 0.0208 0.2617 0.2551 0.0208 0.3691 0.3603
J r=0.8300
h=0.25 k=0.0052 |  0.0104 [ 0.4261 0.4239 0.0104 0.6010 0.5995
=5 0.0208 | 0.2587 0.2545 0.0208 0.3609 0.3599
Ar=0.4160
h=0.125 k=0.0104| 0.0104 | 0.4322 0.4288 0.0104 0.6087 0.6008
=5 0.0208 | 0.2720 0.2597 0.0208 0.3702 0.3641
Ar=3.328
Exact solution 0.0104 0.4232 | 0.0104 0.5985
A=5 0.0208 0.2533 | 0.0208 0.3582
Table (3)
Comparison between the errors in numerical results of problem (P1)
Step Length and A Time t Error = ¥, |u(x;, ) —U(x ,t)]
where U is approximate value of u,
x; = 0.25, x, = 0.5
Euler explicit Euler implicit
h=0.25 0.0104 0.0029 0.0015
k=0.0104 0.0208 0.0011 0.1812
A=1
h=0.25 0.0104 0.001 0.0006
k=0.0052 0.0208 0.0006 0.0004
A=1
h=0.125 0.0104 0.0035 0.0651
k=0.0104 0.0049 0.003
=1 0.0208
h=0.25 0.0104 0.0065 0.0012
k=0.0104 0.0084 0.0018
2=5 0.0208
h=0.25 0.0104 0.0029 0.1013
k=0.0052 0.0054 0.0012
A=5 0.0208
h=0.125 0.0104 0.009 0.0056
k=0.0104 0.0187 0.0064
A=5 0.0208
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\Conclusion and Future work :

From the previous study of the theoretical and numerical solution of

Heat equation in one

dimensional-space, we can conclude the following:

1- We can easily use separation of variables method to compute the
analytical solution of heat equation with homogeneous boundary
conditions. For other problems of heat equation with complicated
boundary conditions, we may need to use another technique.

2- Since explicit finite difference method has a small region of stability
so, we cannot always use it especially with small mesh grids thus we
have to use implicit methods which have a bigger region of stability
and unconditionally stable and our numerical results for problem P,
confirm this claim.
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