Wavelet Polynomials for Solving Linear Fractional Partial Differential Equations.......
Dr. Nabaa N. Hasan

Wavelet Polynomials for Solving
Linear Fractional Partial

Differential Equations

Dr. Nabaa N. Hasan
Department of Mathematics, College of Sciences

Al-Mustansiriya University

Abstract
Wavelets methods are commonly used for the numerical solution of

partial differential equations. In this paper, we extend the Legendre wavelet
polynomial of one variable to Legendre wavelet polynomial of two variables to
approximate the solution of fractional partial differential equations.
Convergence analysis for the solution is discussed. Total error is computed for
the numerical examples to demonstrate the validity of the method.
Keywords: Legendre wavelet method, Partial differential equation, Fractional
order.

V- Introduction

Ordinary and partial fractional differential equations have been focus of
many studies due to their frequent appearance in various applications like in
fluid mechanics, biology, physics and engineering. Most fractional
ordinary/partial differential equations do not have exact analytical solutions,
various numerical and analytic methods have been used to solve these equations.
Recently, several numerical methods to solve fractional differential equations
have been given such as differential transform method [V], Taylor collocation
method [A],[°], homotopy perturbation method [¢] and finite difference
method[Y].

In this paper one of the wavelets polynomials (Legendre wavelet) is
defined and used to approximate partial differential equations of fractional
order, Diethelm method is used to approximate the fractional order.
Convergence analysis for the solution is proved, Numerical examples are
provided to illustrate the Legendre wavelet method and MathCad ) ¢ program is
used for computations.

Y- Definitions

Definition Y,Y: The Caputo fractional derivative operator D* of order o is

defined in the following form, [A], [Y]:
1 ¢ f™

r(m-a)g (x—t)<=™ ’

where m-1<a<m,meN,x> -+ .

Ostaadly puldl) amd) ¢ 14 aal) ¢ Lpla) Al AS Asa

o>

D f (x) =




Wavelet Polynomials for Solving Linear Fractional Partial Differential Equations.......
Dr. Nabaa N. Hasan
Some basic properties of the fractional operator are listed below:
o DY(Af(X)+ tg(x))=AD* f(X)+ uD*g(x) A, ware constants
e DD’f(x)=D*’f(x)=D’D*f(x) V a, B R"
e D“C =0 forany constant C
n o T(n+1)
B I'h+l-«o)
Definition ¥, Y: For m to be the smallest integer that exceeds « , the Caputo time
fractional derivative operator of order « > -+ is defined as, [1]:

e D

x"“ forneNand n>«a

L I(t—r)m_“_lwda forr m-l<a<m
0

D“u(x,t):a lé(ax’t) _ '(m-a) o™t
oTu(x,7) for a=meN
atm

DefinitionY,¥: Wavelets constitute a family of functions constructed from
dilation and translation of a single function called Mother Wavelet. When the
dilation parameter a and translation parameter b vary continuously we have the
following family of continuous wavelets as, [Y]:

L t-b
W () = |a|2z//(T), abeR, a=#0
If we restrict the parameters a, b to discrete values of

a=a,“,b=nb,a,“,a, >Lb, >0 n and k positive integers, we have the following
family of discrete wavelets:

Voo () = [al2p (att —nby),
Where v, (t)forms a wavelet basis for L*(R). In particular, when a, =2and
b, =1, then y , (t) forms an orthonormal basis.
Definition Y.¢: The following functions, [V]:

1 k2 k n-1 n+1
m+—2 n(2°t— <t<
VO =\ PG 2k (")

0, otherwise
are called Legendre wavelets polynomials where n=2n-1,n=1,..2"" ke N,
t[0,1] and m is the order of the Legendre polynomials p .

¥- Legendre wavelet method

In this section Legendre wavelet method is proposed for solving the
following one dimensional fractional problem :

d ;t(i(’t)—a g)(();,t) =f(x,t), a<x<b,0<t<T --(Y)
subject to the boundary conditions:

u(0,t) =h,(t) , u@t)=h,(t) (")
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and initial conditions:

u(x,0) = g(x) --(%)
where « is a parameter describing the fractional derivative, 0<a <1
The Legendre wavelets series is given by:

u®) =22 Com¥am(®

n=1 m=0

where y, . (t) is given by equation (1). We approximate the solution u(t) by the
truncated series

2T M-1

uk,M (t) = Z ch,ml//n,m (t) ___(0)

n=1 m=0
Now we will expand Legendre wavelets series of one variable t in equation (°)
to Legendre wavelets series of two variables x , t to approximate eq.(Y) as
follows:

Let k=), then equation (°) will be ¢,y +Cuyy, +...4+Coy vy v aNd Write it as

M-1
Colo +CiW/y +.ct Cy Wy = D Cotv, () WhiCh is denot by u,, ()

m=0

Then Legendre wavelets series of two variables x , t is given by:

M-1M-1

Uy (1) = D7 > Condh, (w7, (1) (1)

m=0 r=0
where ¢(x)and w(t) are Legendre wavelet functions, ¢, unknown coefficients to
compute.
The method starts by dividing the x- interval into n subintervals to get the

grid points x, =a+iAx, where szb;na and i=0.1,...,n; also t- interval is divide

into s subintervals to get the grid points t, = jat, where At :% and j=01,...,s;

Substitute eq.(1) ineq.() for i=1..,n-1and j=1..,s-1 to get:
Z_Z_Crm¢ (X )Dal//m(t )~ Z_Z_CrmD ¢ (X )‘/Im(t )= f(XI tJ) _--(\/)

m=0 r=0 m=0 r=0

Substitute eq.() in the boundary and initial conditions egs.(Y),(¥),(¢) to get:

M-1M-1

chmﬁ Oy, (t;) =h(t;) , j=01..s ---(N)
ch Dy (t) =h,(,) j=01...,s --(9)
3 1Crm¢ (X )Wm (0) g(X ) i = 0,1 ..... n “'(\ ')

3
o
-

Diethelm method, [ ] is using to approximate D“y (t;)in eq.(Y):
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T l//m(S)_l//lm(O)dS= tj_a J'l//m(t] _tle)_l//m(O) dw
I =9 M(-a)1 W

Dy (t;) =

L
zZGV(t//m(tj—th/L)—l//m(O)) , J=1..,5-1
v=0

where o, are given by

-1 if v=0
“(1—“)“@% ST (V=D (DY, ifv=12.,L-1 ()
j (@D — -1+ 4vie,  ifv=L
Then eq. (V) becomes
2. 2. 2.0, Wt —tv/ L) =y O)kmd; (%) = 2 2 Cm D76, (v (t)) = F(x 1) ()

where i=1..n-1, j=1..5s-1

Combine egs.(»),(3),() +) and (1Y) to obtain system which can be solved to get
the unknown coefficients c,,.

In the following theorem Legendre wavelets solution converges to exact solution
Theorem ¥,V: Legendre wavelets series of two variables x,t gave in eq.(?)
converges towards exact solution u(x,t).

Proof:

By eq.(%) c,, =<u, (x1),4,(X)w,, (t) > where <*> represents an inner product and
é. (X),w,. (t) form orthonormal basis, let ¢ (X)y, (t) = A(x,t), u,, (x,t) =u(x,t) and let
a; =<u(xt),A(x,t)>. Define S, be the partial sum of oa(xt), ie,
S, :iaj/l(x,t). To prove S, is a Cauchy sequence in Hilbert space, let Sy, be

=

arbitrary partial sum with n>m,
<u(x1),S, >=<u(x,t),> a;A(xt) >
j=1

= Zn:aj <u(xt),A(x,t) >

n 2
= Z‘“i‘
j=1
2

Zn:ajﬁ(x,t)

j=m+1

=< Z a; Ax.t), Zn:aj/l(x,t)>: i\aj\z , forn>m

j=m+1 j=m+1 j=m+1

”Sn - Sm”2 =
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2

Zn:ajz(x,t) —0 as nm—oo and {S} is a Cauchy sequence and it

j=m+1
converges to s.

To prove u(x,t)=s.
<S—Uu(x,1),A(x,t) >= <5, A(X,t) > — <u(x,t), A(x,t) >
= <lim___ S ,A(xt)>-a,

Hence

=a;-a;=0
Hence s=u(xt) and n a,A(x,t) converges to u(xt)and this complete the
j=1
proof.
¢- Numerical Examples
To demonstrate the effectiveness of the proposed method we consider
here two test examples of one dimensional fractional problem. Software
MathCad Y ¢ is used to get the numerical results.
Example (¢.Y):
o"u(x,t) _ 1. ou(x,t)
ot 2 ox?
subject to the boundary conditions: u(0,t) =0, u(Lt) =¢'
and the initial condition: u(x,0) = x?
the exact solution for « =0.9, is given by: u(x,t) = x?¢'
Tofind 5,:since LeN,letL=2ineq.(})), then v=0.1234 and
l-a l-a l-a 1-a
O RS S N Pl A
t“a(l-a)LT(-a) t“a(l-a)LT(-a) t“a(l-a)L“T'(-a)
Truncate the series in eq.(Y) to M = ¥, we have 4 unknown coefficients

, 0<x<1l, O<ac<l, t>"

c

m
Co01C011C21Ci01C111C151Cp0,Cx1, Cp to CompUte'
Let A, be a partition for the x-axis, such that: A, :0=x, <x, <X, <X, =1

then x, =0,x, :%,x2 =§,x3 =1, the mesh points for the x-axis.

let A, be a partition for the t-axis such that: A,:0=t, <t, <t, <t, =0.03

then t, =0,t, =0.0L,t, =0.02,t, =0.03 the mesh points for t-axis.

By solving the linear system of )1 equations and 1 unknown coefficients we get
Cy =0.162,¢,, =0.106,¢,, =0.08,c,, =—0.215,¢,, =-0.222,¢,, =0,c,, =-0.09,¢,, =—0.091,c,, =0
Then the approximate solution is:

u,, (x,t) =[0.162¢, (x) + 0.106¢, (x) + 0.084, (X) 1w, (t) +[-0.2154, (X) — 0.2224, (X) I, (t) +
[-0.09¢,(x) —0.091¢, (X) Iy, (t)

vay Ogrually aolil) aaadl ¢ 34 Alaal) ¢ Lo Al A0S Alas



Wavelet Polynomials for Solving Linear Fractional Partial Differential Equations.......
Dr. Nabaa N. Hasan

The total error between the approximate solution u,, (x,t)and exact solution

u(x,t) for

x=0,0.1..1and t=0,0.01,...0.1is given by

DD Uy (x,t) —u(x,1)*]1=2.362x10"°

X t

Table()) illustrate the absolute error between the exact solution and Legendre

wavelet approximate solution.
Table (V): The approximate and the exact solutions of example (£.)):

X t u,, (X1 u(x,t) | -uxt| uy, (x1)
A R S YTE E-o : LAYYEE-o
VY[ NERY: NERY: C)0 ) E-f
Y o0 TS T VYY) E-£
Y | ) Y, .4 Y, CATVAE-©
N R CVNYEY E-S : CYYEY E-£
VS NERYS SERY CAVY E-£
Y[ .Y Y ., foY CYYVY E-£
Y| ey Y, oYY Y, Y VY EAY E-f
v | Y | o  €VIAE-S : L EVAAE-£
VA NERYY NERY: CYYYo E-£
Y)Y | .7 NFRL: « £0A L £TV) B¢
Y | .7 Y,rr VoY CYMYE-¢

Example (¢.Y):

a 2
o u(X’t)—au()z(’t):f(x,t) , 0<x<1l, O<a<l,t>"
ot® OX

27 sin(27x) + 47t sin(27x)

T =r5"0

subject to the boundary conditions: u(0,t) =0, u(Lt)=0
and the initial condition: u(x,0)=0
the exact solution for « =0.1, is given by: u(x,t) =t*sin(22x)
As in example (£.)) we find the unknown coefficients ¢, :

Cp, =-1.522x10%,¢,, =-0.402,¢,, =0,¢,, =0,c, =-0.351,¢,, =0,¢,, =0,¢,, =-0.092,¢,, =0
The approximate solution is:

Uy (X,t) =[-0.402¢, (X)]w, (t) +[-0.351¢; (X) ]y, (t) + [-0.092¢, (X) ], (1)
The total error between the approximate solution u,, (x,t)and exact solution
u(x,t) for

x=0,0.1..1and t=0,0.01,...0.1is given by
DD (uy (x,t)—u(x,t))?]1=1.855x10"°

X t

Table(Y) illustrate the absolute error between the exact solution and Legendre
wavelet approximate solution.
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Table (Y): The approximate and the exact solutions of example (£.Y):

X t u,, (x,t) u(x.t) U | uy (1)
\ , o) -+,0v A E-© . .,o..l/\E_o
VY o) «,AOYY E-Y GATTE- YAV E-
Y/Y ;o) YETE-©0 -OATTEST EYYT E-0
) ;o) +,0)\0 E-0 ) +,0)\0 E-0
oY -, YAY E-o . «,YVYAY E-0
\VAS 0¥ Yoy E-o ,Yeg E-o YY) E-o
Y/Y 0¥ +,YYVA E-0 -+, Yé1¢ E-o +,0AEY E-0
) 0¥ ,YAAY E-o . ,YAAY E-o
. oY «,0V.Y E-0 . ,0V.Y E-o
V/Y AN ,Y1Yo E-o +,Yva¢ E-o Y04 E-o0
Y/Y 0¥ -V EWd EAT -+,YVva¢ E-o o, VYley E-o
\ o, ¥ -+,01Y0 E-0 . +,01Y0 E-0

Conclusions

In this work we derive Legendre wavelet method of two variables for
solving fractional partial differential equations also demonstrated the
convergence analysis of the method. Absolute error in tables(}), (¥) and total
error for numerical examples show the validity of the method.
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