Evaluation of Different Water Quality Parameters for Tigris River and Compare with Tap Water for Different Areas in Baghdad

Dalia Mahmood Jamil
Huda Ghalib Salman
Dhuha Hashem Fadhel

Abstract

In this research effect of some chemical and physical parameters for Tigirs river in Baghdad City in Summer for April mouth -2012 was studied. Samples had been taken for this river and tap water. Water samples were collected from different depths. PH, electrical conductivity (EC), and total dissolved salts (TDS) were studied, nitrate ion was evaluated by spectroscopic method while chloride, carbonate, bicarbonate, magnesium, and calcium were evaluated by titration method. Sodium, Potassium ions were evaluated by Flame Photometer. The concentrations of ions were found to be the ranges (1100-314) mg/L for nitrates in river, (110-7129) mg/L in tap water. For calcium and magnesium were found to being the ranges (50-030), (210-250) mg/L respectively in river, (57-79), (24210-40710) mg/L in tap water. Chlorides were found to being the ranges (7312-00715) mg/L for chlorides in river, (52.13-7715) in tap water. Carbonate and bicarbonate were found to being the ranges (3-7), (3-41) mg/L in river and tap water respectively. PH values were found to be the ranges (5157-7113), EC (1133-0119) µs/cm and TDS (229122-09414) mg/L. From this research many parameters were studied to know quality of water. Value for River in maximum that lead to a pollution in these area. The River water was alkality and environmental pollution.

Key words: river water and tap water in some areas in Tigris river in Baghdad city; UV- Spectrophotometry, PH-meter, EC, Flame photometry and Titration.

Introduction

It has been known for years that the quality of irrigation water directly influences the quality of the soil and the crops grown on this soil. The Tigris River is 1850 km long, rising in the Taurus Mountains Eastern Turkey. The river flows about 400 km through Turkey and then it enters Iraq. The total length of the river in Iraq is 1418 km. No major tributary joins River Tigris south of Baghdad. Few
canals draw water from the Tigris in this region for irrigation purposes. For this reason, the mean annual daily flow of the river falls below its value at Baghdad (1.41×10^3 m3 s$^{-1}$) in Kut and Amara cities at the south [1], also concluded that war on Iraq in 1991, affected the bacteriological quality of the Tigris River in Baghdad especially down river at Dora site, as a result of discharging the material sewage to the river [17]. The nature of the energy of deposition is determined by the river where the sand deposited first at the bottom of the river bed, which represents the beginning of the sediment cycle, the more fine grains to the top phenomenon fining upwards, a phenomenon characteristic of the fluvial meandering environments [4]. In monitoring programs, generally relevant chemical, physical, and biological factors are annually (or with less intervals) sampled and analyzed to sort out governing factors for the water quality variations. Generally, such monitoring gives a clue about the status of water quality that might be valid for a limited time and prespecified objectives. Traditional approaches to assessing water quality are frequently based on a comparison of experimentally determined parameter values with existing guidelines. In many cases, monitoring allows proper identification of contamination sources and may face legal compliance. However, it does not easily give an overall vision of the spatial and temporal trends in the overall water quality in a watershed [4]. The advantage of this approach, besides getting the information and data necessary, is also determined the general health or status of the system of concern. In this way, the index can be used to assess water quality relative to its desirable state (as defined by water quality objectives) and to provide insight into the degree to which water quality is affected by human activity [8]. Tigris River one of the rivers that suffer from the effect of conservative pollutants. Many studies have been done to know these effects [8].

Water may be temporarily or permanently impaired in quality as a result of these actions. Water pollution arising from the presence of foreign substances (organic, inorganic, bacteriological or radiological) which tends to degrade the quality of water [8].

Present study reports the analysis of selected metals (Cd, Cu, Mn, Ni, Pb and Zn) in the Zayandeh Rood River in Isfahan, central part of Iran [8]. Water quality indices are generally calculated in two steps. The selected water quality characteristics having different units of measurement are transformed into sub index values. These sub indices are then aggregated to give a water quality index value. Various water quality indices were reviewed by many researchers; [9, 10, 11, 12, 13]. The wastewater contains chromium, acids, sulfides, and chlorides. Textile and dye industries emit a liquid effluent that contains toxic residues from the cleaning of equipment. Waste from petrochemical
manufacturing plants contains suspended solids, oils and grease, phenols, and benzene. Solid waste generated by petrochemical processes contains spent caustic and other hazardous chemicals implicated in cancer. [1, 2].

Experimental Part

Study area

Water samples from different area in Tigris river in Baghdad City in sequence:

1- River (Hospital Medical City).
2- River (Adhamiyah) - Tab water Adhamiyah.
3- River (Abu- nu’as) - Tab water (Abo- nu’as).
4- River (Jadiriyah) - Tab water (Jadiriyah).
5- River (Doura) - Tab water Doura.
6- River (Yousefah) - Tap water Yousefah.

Collected all samples in summer for April 2012.

Prepare and stored the sample:-
Different samples were taken from study area in plastic bottle of size 5L from different depths of river and a few drops of chloroform were added for each sample to store them, filter the samples by filter paper and keep it in refrigerator for measure.

Apparatus:-
UV- Visible spectrophotometer measure molecules absorption type DR4000 made company HACH, Flame Photometer device type Cornining , pH-meter Hana type Italian made and Conduct meter type Jenway.

Procedures

- Nitrates:
Nitrates ions were measured by taking 50 ml from each sample and adding 10 ml of \(\text{NH}_4 \)Cl solution to it and were completed the volume to 100 ml with distilled water and measure at 215 nm wave lengths.

- Chlorides:
Chlorides ions were measured by titration method by taking 50 ml from each sample and titrate them against silver nitrate 0.01M by using potassium dichromate as indicator.

Potassium and sodium:
These ions were measured by taking different volumes of samples and measure at wave lengths (760, 677) nm respectively by flame photometer. - Carbonate and bicarbonate: these ions were measured by titration method by taking 100 ml from each sample and titrate them against 0.01M HCL by using phenolphthalein and methyl orange as indicators.

- Calcium and magnesium:
these ions were measured by titration method by taking 50 ml from each sample and titrate them against EDTA in the presence of Erochrom blak T and Meroxide.

- Total dissolved salts:TDS: were measured by Dryiny and sublimation.
Evaluation of Different Water Quality Parameters for Tigris River and Compare with Tap Water for Different Areas in Baghdad

Dalia Mahmood Jamil Huda Ghalib Salman Dhuha Hashem Fadhel

- PH, Electrical conductivity(EC): were measured by pH-meter device and conductometric devices type Hana respectively.

Results and Discussion

This search shows the physical and chemical change to the water of the sectors of Tigris river in Baghdad city in Table 1.

High pH values were detected in the study areas because of high dissolved salts and release of carbon dioxide gas and this lead to increase basic properties.[15]

EC values were studied and were between (1133-0119) µs/cm, these values were considered high compare with International Specification[16], 1.19 µs/cm were reported as the highest value in the study areas, it was found that these high values of EC because of high salts in the study areas.[19]

The TDS was estimated in the study areas, showing that the lowest value is 34 ppm and highest value is 1719 ppm, the lowest value in Douro tap, while the highest value in hospital medical city river and this will be outside the allowed boundaries and classified as water and make water unfit for drinking because increase the concentration of chloride, magnesium, and calcium.[18]

Determination of nitrate study, the range value (1100-7129) ppm, notice the high value of nitration in Adhamiyah tap because the areas infested agriculture
land which is used by the fertilizer nitrogen for the purpose of increasing agriculture production and thus enter the fertilizer into the river to increase the nitrate level in river, but lower concentration in these area because lower agriculture area.\[19\]

Also studied concentration of chloride ion, the high value 115.6 ppm in Yousefah tap, and the lower value is 27.44 ppm in Doura tap, attributed the cause for this increase in the proportion of the salts in the soil as a result of evaporation and the flow of these salts to the river, because increase TDS, causing the increase of concentration chloride.\[21\]

The air is considered as the major source of Carbonate and bicarbonates o, in addition to minerals and carbonate rocks, the rate of concentration carbonate (3.01) ppm, but bicarbonate (3.41) ppm, the high value were recorded in Jadiriya\[2\] river, the lowest value in Jadiriya tap and Adhamiyah tap; the high value in carbonate and bicarbonate led to increase the PH and attach basic medium $[20]$.\[22\]

The concentration of magnesium and calcium for water sample had been studied showing the range value ($210-407.10$, $50-030$) ppm respectively. Notice the decrease value in hospital medical city river and al-jadiriya river, because gradually due to consumption by the aquaculture while there increase in al-Doura tap and Abo-nu'as river, because sedimentary rocks and the lack of aquatic life consumed , increase the calcium and magnesium lead to increase the basicity.\[23\]

The range of sodium and potassium concentration was about ($142-292$, $1.09-9$) ppm, the upper value of sodium concentrderd in Adhamiyah river, because the presence of the halite rock .The concentration of potassium is lower for international specification because decrease the clay soil that the special source potassium. \[24\]

<table>
<thead>
<tr>
<th>Region</th>
<th>EC μs/cm</th>
<th>PH</th>
<th>TDS ppm</th>
<th>CO$_3^-$ ppm</th>
<th>HCO$_3^-$ ppm</th>
<th>CL ppm</th>
<th>NO$_3^-$ ppm</th>
<th>K$^+$ ppm</th>
<th>Na$^+$ ppm</th>
<th>Ca$^{2+}$ ppm</th>
<th>Mg$^{2+}$ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yousefah[2] river</td>
<td>1.3</td>
<td>7.02</td>
<td>477.9</td>
<td>8</td>
<td>10</td>
<td>110.2</td>
<td>0.15</td>
<td>8</td>
<td>180</td>
<td>70</td>
<td>260</td>
</tr>
<tr>
<td>Yousefah tap</td>
<td>0.69</td>
<td>7.39</td>
<td>376.29</td>
<td>5</td>
<td>12</td>
<td>119.6</td>
<td>0.3</td>
<td>6</td>
<td>190</td>
<td>87</td>
<td>238</td>
</tr>
<tr>
<td>Doura[2] river</td>
<td>0.88</td>
<td>7.08</td>
<td>333.19</td>
<td>4</td>
<td>12</td>
<td>110.8</td>
<td>0.28</td>
<td>5.2</td>
<td>140</td>
<td>47</td>
<td>133</td>
</tr>
<tr>
<td>Doura tap</td>
<td>0.42</td>
<td>7.77</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Jadiriya[2] river</td>
<td>0.68</td>
<td>7.13</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Jadiriya tap</td>
<td>0.68</td>
<td>7.08</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Abo-nu'as[2] river</td>
<td>0.68</td>
<td>8.10</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Abo-nu'as tap</td>
<td>0.88</td>
<td>8.40</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Hospital medical city</td>
<td>1.37</td>
<td>7.87</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Adhamiyah[2] river</td>
<td>0.58</td>
<td>7.04</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
<tr>
<td>Adhamiyah tap</td>
<td>0.54</td>
<td>7.88</td>
<td>477.44</td>
<td>10</td>
<td>14</td>
<td>171.4</td>
<td>0.24</td>
<td>3.9</td>
<td>189</td>
<td>15</td>
<td>108</td>
</tr>
</tbody>
</table>
دراسة بعض المتغيرات الكيميائية لمياه نهر دجلة في بعض المناطق، بغداد

داليا محمود جميل، هدى غالب، ضحى هاشم فاضل

تتولى البحث تقييم بعض المتغيرات الكيميائية والفيزيائية لمياه نهر دجلة في بعض المناطق في محافظة بغداد، وذلك باستخدام بعض الطرق التحليلية لقياس بعض المتغيرات مثل

- الاملاح المذابة: تساعد في قياس صحة الماء و станет جزءاً من المعايير العالمية لقياس طبيعة الماء.
- الصوديوم والبوتاسيوم: تساعد في قياس صحة الماء و تساعد في قياس صحة الماء و تساعد في قياس صحة الماء.
- pH: يمثل جودة الماء و يساعد في قياس صحة الماء و يساعد في قياس صحة الماء.

التوصيلية الكهربائية: تساعد في قياس صحة الماء و تساعد في قياس صحة الماء.

الكلوريد: يمثل جودة الماء و يساعد في قياس صحة الماء و يساعد في قياس صحة الماء.

الكلوريد: يمثل جودة الماء و يساعد في قياس صحة الماء و يساعد في قياس صحة الماء.

تتولى البحث تقييم بعض المتغيرات الكيميائية والفيزيائية لمياه نهر دجلة في بعض المناطق، بغداد

References