On Contra –rgα-Continuous Functions Types And Almost Contra –rgα-Continuous Function

Dunya M .Hammed Amel A.Gafil

Department of Mathematics College of Education AL.Mustansiryia University

<u>Abstract :</u>

The main aim of this paper is to study some new classes of contra – continuous functions which are (contra –rga-continuous function, contra –rga*-continuous function and contra–rga**-continuous function) in topological space and introduce some of their properties and relation among them. Also we define and study other type of contra- rga-continuous function called almost contra –rga- continuous function.

<u> \-Introduction :</u>

In 1997, Dontchev [1] introduced the notion of contra continuity and obtained some results concerning compactness. S-closedness and strong S-closedness. Recently anew weaker from of this class of function.

called contra-semi continuous functions is introduced And investigated by Dontchev and Noiri[γ]. Also ,in [ξ] (Jafari .S And Noiri.T in $\gamma \cdot \cdot \gamma$) introduced and studied new definition of contra-continuous is said to be contra – α -continuous function.

The concepts ($rg\alpha$ -closed, $rg\alpha$ -open and $rg\alpha$ -continuous functions types) was introduced by (vadivel .A and vairamanickam.K in [1,], [1,]]).

This paper is to introduce and investigate anew class of functions namely (contra- $rg\alpha$ -continuous, contra- $rg\alpha^*$ -continuous and contra- $rg\alpha^{**}$ - continuous) functions and given the relation between these functions. Also we obtain several basic properties and study the notion almost contra - $rg\alpha$ -continuous function. Throughtout the paper X, Y and Z denote the topological space (X, τ)

 (Y,σ) and (Z,μ) respectively and on which no separation axioms are assumed unless otherwise explicitly stated .For any subset A of a space $(X \tau)$ the closure of A. interior of A and the complement of A are denoted by cL(A) and A^c or X-A respectively.

Y-Preliminaries:

Some definition and basic concepts have been given in this section. <u>Definition (7-1): [9], [9]</u>Subset A of a space (X,τ) is said to be</u>

Y- *a*-open set if $A \subseteq int(cL(int(A)))$ and *a*-closed set if $cL(int(cL(A)) \subseteq A)$ Y- regular open set if A = int(cL(A)) and regular closed set if

A = cL(int(A))

The intersection of all α -closed subset of (X, τ) containing A is called the α -closure of A and is denoted by $\alpha cL(A)$.

<u> Definition(^r- ^r): [¹ •]</u>

A subset *A* of a space (X, τ) is said to be

)- *regular a-open set* (briefly ra-open) if there is a regular open set U such that $U \subset A \subset acL(U)$. The family of all regular α -open sets of X is denoted by $R_{\alpha} \cdot (X)$.

^Y- *regular generalized a-closed set* (briefly, rga-closed) If $\alpha cL(A) \subset U$ whenever $A \subset U$ and U is regular α - open in X. The set of all rga-closed set in X denoted by $RG \alpha C(X)$.

^{*r*}*-regular generalized α-open* (briefly, rgα-open) in *X* If *A^c* is rgα-closed set in *X*. The family of all rgα-open sets in *X* denoted by *RG αO*(*X*).

<u>Definition(^r- ^r): [⁻]</u>

A subset A of a topological space(X, τ) is said to be *Regular generalized closed* (briefly, rg-closed) if $cL(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open set in X.

<u>Remark(^{*}- ٤): [٩]</u>

In any topological space (X, τ)

 \cdot -Every open (resp.closed) set in X is rga-open (resp.rga-closed) set.

 γ - Every rga-closed (resp.rga-open) set in X is rg-closed

(resp.rg-open)set.

The converse of the above Remark need not be true , as seen from the following example.

Example('- '):

Let $X = \{a, b, c, d, e\}$ with topology

 $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a,d\}, \{a,e\}, \{d,e\}, \{a,d,e\}\}\$. Then the set $A = \{b\}$ is a rga-closed set but is not closed set in X, and the set $B = \{a,b\}$ is

rg-closed set but not rg α -closed set in X.also A^c=, {a,c,d} is a rg α -open set but is not open in X, and $B^c = \{c, d\}$ is a rg –open set but is not rg α -open.

<u>Remark(۲- ٥): [٥] , [١ .]</u>

For any topological space (X, τ).

¹- Every open (resp.closed) set in α -open (resp. α -closed) set in X.

^γ- Every α-open (resp. α-closed) set is rga-open (resp.rga-closed) set in X.

 $\$ ^{τ}-The union of two rga-closed subset of X is also rga-closed subset of X. But the intersection of two rga-closed set in X is generally not rga-closed set in X.

But, the converse of Remark (⁷-^o) need not be true, as seen from the following example

Example(**'- '**):

Let X={a,b,c} with topology $\tau = \{X, \phi, \{a\}, \{a,c\}\}$.

Then the set $A = \{a, b\}$ is α -open set but is not open set in X and $A^c = \{c\}$ is a α -closed set in X but is not closed set in X.

Also the set $B = \{b, c\}$ is a rga-open set but is not α -open set in X and $B^c = \{a\}$ is a rga-closed set in X but is not α - closed.

Definition(Y- 7): [], [], []]

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

Y-continuous if the inverse image of every open (closed) set in Y is an open (closed) set in X.

 γ -*a-continuous* if the inverse image of every open (closed) set in Y is an α -open (α -closed) set in X.

r-*rga-continuous* if the inverse image of every open (closed)set in Y is an rgaopen (rga-closed)set in X.

 ξ - *rga-irresolute* if the inverse image of every rga-open (rga-closed) set in Y is an rga-open(rga-closed) set in X.

°-*Strongly rga-continuous* if the inverse image of every rga-open(rga-closed) set in Y is an open (closed)set in X.

¬-almost continuous if the inverse image of every regular open set in Yis an open set in X.

<u> Definition(۲- ۷): [٦] :</u>

A space (X,τ) is said to be a $T^{*1/2}$ -space if every rg-closed set in X is closed. **Definition** $(T - \Lambda)$: $[T], [\Lambda]$

A space(X,τ) is said to be *locally indiscrete* if every open subset of X is closed. *Definition*(^{*τ*- 4}): [^{*1*}], [^{*ε*}]

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ *is* said to be

'-contra-continuous if f'(V) is closed in X for every open set V in Y.

Y- contra- α -continuous if f'(V) is α - closed set in X for every open set V in Y.

<u>Remark(^r- ¹ •): [*٤*]</u>

Every contra-continuous function is contra- α –continuous, but not conversely as see from the following example.

Example(۲- ۴):

Consider X={a,b,c} with topology $\tau = \{X, \phi, \{a\}, \{a,c\}\}$.

let the function f: $(X, \tau) \rightarrow (X, \tau)$ be defined by f(a)=b,

f (b)=c and f(c)=a. It is clear that f is contra- α –continuous but is not contracontinuous function .since the set {a} is an open set in X.

But f^{-'}(a)=c is α – closed but is not closed set in (X, τ).

"-On Contra-rgα-Continuous Functions Types:

In this section we introduce and study new class of contra-continuous function namely (contra- rga-continuous , contra- rga*-continuous and contra- rga**-

continuous)function and discussion the relations between them. Also, we give some proposition and results about the composition of these functions.

Definition("- '):

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *contra-rga-continuous* if f'(A) is rgaopen set in (X, τ) for every closed set A of (Y, σ) .

Proposition("- "):

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- rg α - continuous if and only if for each open set A in (Y,σ) , then f'(A) is rg α -closed set in (X,τ) .

Proof:

Assume that f is contra- rga-continuous function. Let A be any open set in (Y,σ) .then A^c is a closed set in Y.since f is contra- rga- continuous. Thus f' (A^c) is an rga-open set in X. But f' $(A^c)=X-f'(A)=(f'(A))^c$ and so f'(A) is a rga-closed set in (X,τ) .

Conversely . let A is closed set in (Y,σ) . Then A^c is an open set in (Y,σ) . By assumption we get $f^{-1}(A^c)$ is rga-closed set in (X,τ) .

But $f'(A^c)=X-f'(A)=(f'(A))^c$. Thus, f'(A) is an $rg\alpha$ -open set in (X,τ) . Hence a function $f: (X,\tau) \rightarrow (Y,\sigma)$ is contra- $rg\alpha$ - continuous

Proposition("-"):

Every contra continuous (resp.contra- α - continuous) function is contra- rga- continuous.

<u>Proof</u>:

It follows from the definition (7-7) and the fact that every closed (resp. α -closed) set is rg α -closed set.

Converse of the above proposition need not be true, as seen from the following example.

Example("- '):

Let $X=Y=\{a,b,c\}$ with topology $\tau=\{X, \emptyset, \{a\}\}$ and

 $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=a, f(b)=b and f(c)=c. Then this function is contra- rga- continuous but is not

contra –continuous(resp.contra - α - continuous). Since the set A={a} is an open set in (Y, σ) but f['](A)= f[']({a})= {a}is not closed (resp. α -closed) in (X, τ)

Here, we define and introduce some new notions and results, that shall needed in this work.

Definition(^{r.} ٤):

A space (X,τ) is said to be *rga-locall indiscrete* if every rga-open set in X is closed.

<u>**Example(**</u>#-#): Let X= {a,b } with topology τ ={X, \emptyset , {a}, {b }} it easy seen that a space(X, τ) is a rg α -locally indiscrete.

Notes, the following proposition and results given the necessarily condition in order to every rga-closed (resp. rga-open) set is a closed (resp.open) set.

<u>**Proposition(**</u>"-"): If a space(X, τ) is a T^{*1/2}-space. Then every rg α -closed set in X is a closed set .

Proof:

It follows from the Remark $(\gamma - \xi)$ - step- γ - and definition $(\gamma - \gamma)$.

<u>Corollary("- ")</u>: If a space(X, τ) is a $T^* \frac{1}{2}$ -space, Then every rga-open set in X is an open set.

Proof:

Let A be an rg α -open set in (X, τ). Then A^c is a rg α -closed set in (X, τ), Since X is a $T^*1/2$ -space. Then A^c is a closed set in X. Hence A is an open set in X.

Proposition("- "):

If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is rga- continuous and (X, τ) is rga-locally indiscrete space, then f is contra-continuous.

Proof:

Let *A* be an open set of (Y,σ) .thus f⁻(*A*) is a rg α -open set in (X, τ) .since (X, τ) is a rg α -locally indiscrete. then f⁻(*A*) is closed set in (X, τ) .Hence f is contra – continuous.

Corollary("- ^):

If a function f: f: $(X, \tau) \rightarrow (Y, \sigma)$ is rga- continuous and (X, τ) is rga-locally indiscrete space, then f is contra- α -continuous.

Proof:

It follows from the proposition $(^{v}-v)$ and the fact that every contra-continuous function is contra- α -continuous.

<u>**Proposition**(#-4):</u> If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a rga- continuous function and let X is rga-locally indiscrete. then f is contra- rga- continuous.

Proof:

Let A is an open set in Y. Thus f'(A) is a rga- open set in X. Since X is rgalocally indiscrete and by using definition $({}^{\tau}-{}^{t})$ we get f'(A) is a closed set in X and by Remark $({}^{\tau}-{}^{t})$ we have f'(A) is a rga-closed set in X. Hence ,f is contrarga- continuous.

Similarly, we prove the following proposition_

<u>Corollary("-1.)</u>: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a continuous function and let X is locally indiscrete. Then f is contra- rg α - continuous.

Now, the following proposition and corollary given the condition to make the converse of a proposition (r - r) true.

Proposition("- 1):

If a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra-rg α - continuous and X is $T^* \frac{1}{2}$ space, then f is contra-continuous.

Proof:

Let *A* be an open set in Y. Thus, f'(A) is a rg α - closed set in X .since X is a $T^* \frac{1}{2}$ space and by using proposition ($(-\circ)$) we get f'(A) is a closed set in X .Hence f is contra –continuous function.

Corollary("- 1"):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra-rg α - continuous function and X is $T^{*1/2}$ space ,then f is contra- α - continuous.

Proof:

It follows from the proposition (r-1) and the fact that every contracontinuous function is contra- α - continuous.

Next, other type of contra-rga- continuous is called contra-rga^{*}- continuous are given by following definition.

<u>Definition("-)") :</u>

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *contra-rga^{*}- continuous* if f^{-'}(A) is an open set in(X, τ) for every rga-closed set A of (Y, σ) .

Proposition("- 1 £):

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra-rg α^* - continuous if and only if for each rg α -open set A of (Y, σ) , then f⁻(A) is a closed set in (X, τ) .

Proof:

Assume that f is contra-rga^{*}- continuous. Let A be any rga-open set in (Y,σ) . Then A^c is a rga-closed set in (Y,σ) . Since f is contra-rga^{*}- continuous function. Thus, f⁻¹(A^c) is an open set in (X, τ) .

But $f'(A^c) = X - f'(A) = (f'(A))^c$ then, f'(A) is closed set in (X, τ) .

Conversely, let A is a rga-closed set in(Y, σ). Then A^cis an rga-open set in(Y, σ). By assumption we get f⁻¹(A^c) is a closed set in(X, τ).But

 $f'(A^c)=X-f'(A) = (f'(A))^c$ Hence f'(A) is an open set in (X, τ) . Therefore f is contra-rg α^* - continuous function.

Proposition("- 1 °):

Every contra- rga^* - continuous function is contra-continuous.

Proof:

Let f: $(X \tau) \rightarrow (Y, \sigma)$ be a contra-rg α^* - continuous function and let A be an open set in Y. By Remark $(\gamma - \xi)$ we get A is rg α -open set in Y. Thus

f'(A) is A closed set in X.Hence a function f is a contra –continuous.

Corollary("- 17):

If function $f: (X, \tau) \rightarrow (Y, \sigma)$ is a contra-rg α^* - continuous

Then f is

i- contra $-\alpha$ - continuous.

ü-contra-rgα-continuous.

Proof:

(*i*) It follows from proposition $(\gamma_{-1}\circ)$ and the fact that every contra- continuous function is contra $-\alpha$ - continuous.

(*ii*) It follows from proposition($(\gamma - \gamma \circ)$) and proposition($(\gamma - \gamma)$).

The converse of proposition (f-1) and corollary (f-1) may not be true. To illustrate that consider the following example.

Example(**''- ''**):

Let $X = \{a, b, c, d\}$ with topology

 $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}.$

Define f: $(X, \tau) \rightarrow (X \tau)$ by f(c)=a, f(b)=d, f(a)=c and f(d)=b. It is observe that f is contra –continuous (contra – α - continuous and contra-rg α - continuous) function.

But is not contra-rg α^* - continuous, since the set {c,d } is rg α^* -open set in (X, τ) but f⁻'({c,d })={a,b } is not closed set in (X, τ).

Here, in the following proposition and result given the condition to make the converse of a proposition (("-)") and corollary (("-)") true.

Proposition("- 1 V):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra - continuous function and let Y is $T^* \frac{1}{2}$ space Then f is contra-rg α^* - continuous.

Proof:

Let *A* be an rg α -open set in Y. since Y is $T^* \frac{1}{2} space$ and by using corollary((, A)) we get *A* is an open set in Y.Since f is a contra-continuous function. Thus, f⁻¹(A^c)

is a closed set in (X,τ) . Hence, a function f is a contra-rg α^* - continuous.

Similarly, we prove the following corollary.

Corollary("- 1 ^):

Let f: $(X\tau) \rightarrow (Y,\sigma)$ be any function and let X,Y are both $T^{*1/2}$ space. Then f is contra-rg α^* - continuous function if

i) f is contra $-\alpha$ - continuous function.(

(ii) f is contra-rga- continuous function.

Proposition("-) ?):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a strongly - rg α - continuous function and let X is a locally indiscrete. Then f is contra-rg α^* - continuous.

Proof:

Let A be an rg α -open set in Y. Thus f⁻(A) is an open set in X. Since X is a locally indiscrete. Then f⁻(A) is a closed set in X. Hence, f is contra $- rg\alpha^*$ -continuous function.

Proposition("- " ·):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a rg α - continuous function .let Y is a T^{*1/2} space and X is rg α - locally indiscrete, Then f is contra – rg α ^{*}- continuous function.

<u>Proof:</u>

Let *A* be an rg α -open set in Y. Since Y is $T^* \frac{1}{2}$ space then *A* is an open set in Y and also since f is a rg α - continuous function. Thus, $f^{-1}(A)$ is a rg α -open set in X. But X is a rg α - locally indiscrete. Then $f^{-1}(A)$ is a closed set in X. Hence, f is contra – rg α^* - continuous function.

The proof of the following corollary it is easy. Thus it is omitted.

Corollary(^{*}-^{*}):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is continuous function and X is a locally indiscre, Y is a $T^* \frac{1}{2}$ space. Then f is a contra – $rg\alpha^*$ - continuous function.

The following definition given other type of contra – rga- continuous function is said to be contra – rga^{**} - continuous function.

Definition("- " "):

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be *contra-rga*^{**}- *continuous* if f⁻(A) is a rga- open set in(X, τ) for every rga-closed set in (Y, σ).

Proposition("- ""):

A function f: $(X, \tau) \rightarrow (Y,\sigma)$ is a contra-rg α^{**} - continuous if and only if for each rg α - open set A in (Y,σ) , then f'(A) is a rg α -closed set in (X,τ)

Proof:

Suppose that f is contra-rg α^{**} -continuous function and let A be any rg α - open set in (Y, σ). Then A^c is a rg α -closed set in (Y, σ). Thus, f⁻¹(A^c) is a rg α - open set in(X, , τ). But f⁻¹(A^c)=X-f⁻¹(A) = (f¹(A))^c .Hence f⁻¹(A) is a rg α -closed set in (X, , τ).

Conversely, let *A* is a rg α -closed set in (Y, σ). then *A*^c is an rg α -open set in(Y, σ). By assumption f⁻¹(*A*^c) is a rg α -closed set in (X, , τ).

Since $f'(A^c)=X-f'(A) = (f'(A))^c$. Then f'(A) is a rg α -open set in

(X, τ).Hence f is contra-rg α^{**} -continuous function.

Proposition("- " f):

Every contra-rg α^{**} -continuous function is contra-rg α -continuous.

Proof:

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a contra-rg α^{**} - continuous function and let A is a closed set in Y and by using Remark $(\gamma - \epsilon)$ we get A is a rg α -closed set in Y.Since f is a contra-rg α^{**} -continuous. Then f⁻¹(A) is a rg α -open set in X. Hence, a function f is a contra-rg α -continuous.

But, the converse of above proposition need not be true as seen from the following example.

Example("- :): Let X= {a,b, c,d } with topology

 $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}\}$. Let the function

f: $(X,\tau) \rightarrow (X,\tau)$ be defined by f(a)=f(c)=a, f(b)=d, and f(d)=b. Then this function is contra – rga- continuous But is not contra-rga^{**}- continuous function, since the set {a,b }is rga-closed set in X

but $f'(\{a,b\}) = \{a,c,d\}$ is not rg α -open set in X.

Now, the following proposition show the relation between contra- rga^* continuous function and contra- rga^{**} - continuous function.

Proposition("- "):

Every contra-rga^{*}-continuous function is contra-rga^{**}-continuous.

Proof:

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra-rga^{*}- continuous function and let A be an rgaopen set in Y. Thus f⁻(A) is a closed set in X. and by using Remark($(\tau - \epsilon)$) we get f⁻(A) is a rga-closed set in X.. Hence, a function f is a contra-rga^{**}-continuous. *The converse of above proposition need not be true, as seen from the following example.*

<u>Example(7-9)</u>: Let X= {a,b,c, } with topology $\tau = \{x, \emptyset, \{a\}, \{a, c\}\}$. Define f: (X τ) \rightarrow (X, τ) by f(a)=a, f(b)=b, f(c)=c. Then it is easy see that f is contra-rg α^{**} -continuous function .but not contra-rg α^* -continuous. Since the {a,c} is an rg α -open set in X but f'({a,c}) = {a,c} is rg α -closed set in X but is not closed set.

Next, in the following proposition addition the necessarily condition in order to the converse of proposition $(f'-f' \epsilon)$, $(f'-f' \epsilon)$ true

<u>**Proposition("- " 7):**</u>

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- rg α - continuous function and let Y be a $T^* \frac{1}{2}$ space. Then f is contra – rg α^{**} - continuous function.

Proof:

Let *A* be a rg α -closed set in Y. Since Y is $T^*\frac{1}{2}$ space and by proposition($(\tau - \circ)$) we get *A* is a closed set in Y and also since f is a contra- rg α - continuous. Thus, $f^{-1}(A)$ is a rg α -open set in X. Hence, f is contra – rg α^{**} - continuous.

Similarly, we prove the following corollary.

Proposition("- "):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- $rg\alpha^{**}$ - continuous function and let X be a $T^{*1/2}$ space. Then f is contra – $rg\alpha^{*}$ - continuous.

<u>Remark("- "^):</u>

The following example shows that contra-continuous function and contra- α -continuous function are independent of a contra- $rg\alpha^{**}$ - continuous function.

Example("- "): Let X=Y= {a,b, c, } with topologies τ ={X, \emptyset ,{a},{b}, {a, b}} and σ = {y, , \emptyset , {a}}. Define f: (X, τ) \rightarrow (Y, σ) by f(a)=b, f(b)=c and f(c)=a. It is easy seen that f is a contra-continuous (contra- α -continuous) function, but is not contra- rg α ^{**}- continuous function.

Since the set{b} is a rg α -open set in (Y, σ) but f'({b})={a} is not rg α -closed set in (X, τ).

<u>**Example(**</u>"-<u>V)</u>: Let X=Y= {a,b, c, d} with topologies τ ={X, Ø, {a}, {b}, {a, b}, {b}, {a, b, c} and σ = {Y, Ø, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, b, d} Define f: (X, τ) \rightarrow (Y, σ) by f(a)= f(b)=a, f(c)=c and f(d)=d. It is observe that f is contrarga**-continuous function but is not contra- continuous (resp. contra - α - continuous)function.

Since the set{a }is an open set in (Y,σ) but $f'(\{a\})=\{a,b\}$ is not closed(resp. α -closed) set in (X,τ) .

The following propositions results given the condition to make Remark(^r- ^r^A) true:

Proposition("- "):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- $rg\alpha^{**}$ - continuous function, and let X be a $T^* I/_2$ space. Then f is contra –continuous.

Proof:

Let \overline{A} be an open set in Y. By Remark($(-\xi)$) we get A is a rg α -open set in Y. Since f is contra- rg α^{**} - continuous. Then f'(A) is a rg α -closed set in X and also since X is a $T^{*1/2}$ space. Thus, f'(A) is closed set in X. Hence, a function f is a contra –continuous.

Corollary("- ".):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- $rg\alpha^{**}$ - continuous function and let X is a $T^* \frac{1}{2}$ space. Then f is a contra $-\alpha$ - continuous.

Proof:

It follows from proposition $({}^{r}-{}^{r}{}^{q})$ and the fact that every contra-continuous function is contra- α -continuous.

Proposition("- "):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- continuous function and Y is $T^* \frac{1}{2}$ space. Then f is contra – $rg\alpha^{**}$ -continuous.

Proof:

Let \overline{A} be an rg α -open set in Y. Since Y is $T^* \frac{1}{2}$ space and by using Corollary ($(\gamma - \gamma)$) we get A is an open set in Y and also since f is contra- continuous function. Then, $f^{-1}(A)$ is a closed set in X and by

Remark($\gamma - \epsilon$) we obtain, f'(A) is closed set in X.Hence, a function f is a contrarg α^{**} -continuous.

The proof of the following corollary it is easy. Thus it is omitted. <u>Corollary(f'-f'f):</u>

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra- α - continuous function and Y is $T^{*1/2}space$. Then f is contra- $rg\alpha^{**}$ -continuous.

Proposition("- ""):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a rg α -irresolute function and let X be a rg α -locally indiscrete. Then f is

(*i*) contra- $rg\alpha^*$ -continuous.

(*ii*) contra- $rg\alpha^{**}$ -continuous.

Proof:

(*i*) Let A be an rg α -open set in Y.Thus f⁻¹(A) is a rg α -open set in X.Since X is a rg α -locally indiscrete.

Then f'(A) is closed set in X. Hence, a function f is contra- $rg\alpha^{**}$ -continuous.

(*ii*)It following from step-i-and proposition($(\gamma - \gamma \circ)$).

Corollary("- " :):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a strongly rg α - continuous function and let X is a locally indiscrete. Then f is contra- rg α^{**} - cotinuous function.

Proof:

It follows from the proposition $(^{\intercal}-1^{\circ})$ and proposition $(^{\intercal}-1^{\circ})$.

Corollary("- "):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a rg α - continuous function. let X is a rg α - locally indiscrete and Y is $T^* \frac{1}{2}$ space. Then f is contra- rg α^{**} -continuous function. **Proof**:

Proof:

It follows from the proposition $(^{r}-^{r})$ and proposition $(^{r}-^{r})$.

Now, we introduce the composition of these types of contra- rga-continuous function with continuous (resp. rga-continuous, strongly rga-continuous and rga-irresolute) function.

Proposition("- " 7):

Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ be two functions, if g is continuous and f is contra- rga- continuous. Then gof: $(X, \tau) \to (Z, \mu)$ is a contra - rga- continuous.

Proof:

Let A be an open set in Z. Thus $g^{-}(A)$ is an open set in Y. Since f is a contrarga-continuous. Then

 $f^{-\prime}(g^{-\prime}(A))$ is a rga-closed set. But $f^{-\prime}(g^{-\prime}(A)) = (gof)^{-\prime}(A)$ Hence,

gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra– rg α -continuous function.

Similarly, we prove the following corollary.

Corollary("- "):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\mu)$ be two functions if g is continuous and f is

(*i*) contra- $rg\alpha^{**}$ -continuous. Then, gof: $(X,\tau) \rightarrow (Z,\mu)$ is contra – $rg\alpha$ -continuous.

(*ii*) contra- $rg\alpha^{**}$ -continuous. Then, gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra – continuous (resp. contra – $rg\alpha$ –continuous)

function.

Proposition("- "^):

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\mu)$ be two functions. Then, gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra – rg α -continuous if g is rg α -continuous and

(i) f is a contra- $rg\alpha^{**}$ -continuous.

(*ii*) f is a contra- $rg\alpha^*$ -continuous.

Proof:

(*i*) Let A be a closed set in Z. Thus $g^{-'}(A)$ is a rg α -closed set in Y. Since f is a contra- rg α^{**} -continuous. Then, $f^{-'}(g^{-'}(A))$ is a rg α -open set in X. But $f^{-'}(g^{-'}(A)) = (gof)^{-'}(A)$. Hence, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra- rg α -continuous function.

(*ii*)By assumption f is a contra- $rg\alpha^*$ -continuous function and by using proposition($(r-r\alpha)$) we get f is a contra- $rg\alpha^{**}$ -continuous function and by step-i-we obtain,

gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra- rg α -continuous.

Proposition("- " "):

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\mu)$ be two functions. Then, their composition gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra – $rg\alpha^{**}$ -continuous if g is $rg\alpha$ -irresolute and

(*i*)f is a contra- $rg\alpha^{**}$ -continuous.

(*ii*) f is a contra- $rg\alpha^*$ -continuous.

Proof:

(*i*) Let A be a rg α - closed set in Z. Thus, $g^{-'}(A)$ is a rg α -closed set in Y. Since f is a contra- rg α^{**} -continuous. Then, $f^{-'}(g^{-'}(A))$ is an rg α -open set in X. But $f^{-'}(g^{-'}(A)) = (gof)^{-'}(A)$. Hence, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra- rg α^{**} -continuous function.

(*ii*) By assumption f is a contra- $rg\alpha^*$ -continuous function and by proposition(τ°) we get f is a contra- $rg\alpha^{**}$ -continuous function and by step-i- we obtain, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra- $rg\alpha$ -continuous.

Similarly, we prove the following results:

Corollary("- ٤ •):

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \mu)$ be two functions. Then, their composition gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra – $rg\alpha^{**}$ -continuous, if g is strongly $rg\alpha$ - continuous and

(*i*)f is a contra-continuous.

(*ii*) f is a contra- $rg\alpha^*$ -continuous.

Corollary("- ± 1):

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \mu)$ be two functions. Then, their composition gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra – $rg\alpha^*$ -continuous, if g is a strongly $rg\alpha$ - continuous and

(*i*)f is a contra- $rg\alpha$ -continuous.

(*ii*) f is a contra- $rg\alpha^{**}$ -continuous.

Proposition("- + "):

If f: $(X \tau) \rightarrow (Y, \sigma)$ is a strongly rga-continuous function and

g: (Y, σ) \rightarrow (Z, μ) is a contra- rg α -continuous

function. Then, their composition gof: $(X, \tau) \rightarrow (Z, \mu)$ is

(*i*)contra-continuous.

(*ii*) contra- α -continuous.

(*iii*) contra- rgα-continuous.

Proof:

(i) Let A be an open set in Z. Since g is contra $-rg\alpha$ -continuous.

Then, $g^{-}(A)$ is a rga-closed set in Y and also Since f is a strongly rgacontinuous function. Thus, $f'(g^{-}(A))$ is a closed set in X.

But f'(g'(A)) = (gof)'(A). Hence, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contracontinuous.

(*ii*)It follows from the step-i- and Remark($(\gamma - \gamma \cdot)$).

(*iii*)It follows from the step -i-and proposition($(^{r}-^{r})$).

The proof of the following corollary it is easy. Thus it is omitted. Corollary("- f"):

If f: $(\overline{X,\tau}) \rightarrow (Y, \sigma)$ is a rg α -irresolute and g: (Y, σ)) $\rightarrow (Z, \mu)$ is a contra- rg α continuous function.

Then, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra- rg α -continuous function.

Proposition("- £ £):

if f: $(X,\tau) \rightarrow (Y,\sigma)$ is a strongly rg α -continuous function and

g: $(Y,\sigma) \rightarrow (Z,\mu)$ is a contra- $rg\alpha^*$ -continuous

function. Then, their composition gof: $(X, \tau) \rightarrow (Z, \mu)$ is

contra- $rg\alpha^*$ -continuous function.

Proof:

Let A be a rg α - closed set in Z. Thus, $g^{-1}(A)$ is an open set in Y. By Remark((-1)) we get $g^{-1}(A)$ is a rg α -open set in Y and Since f is a strongly rg α -continuous function. Then, $f^{-1}(g^{-1}(A))$ is an open set in X. But $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A)$

. Hence, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a contra- $rg\alpha^*$ -continuous function.

Similarly, we prove the following results: Corollary(f'(f))

Corollary("- 20):

If f: (X, τ) \rightarrow (Y, σ) is a rg α -continuous (or rg α -irresolute)

and g: $(Y,\sigma) \rightarrow (Z,\mu)$ is a contra- rg α^* -continuous. Then, their composition

gof: (X , τ) \rightarrow (Z, μ) is a contra- rg α^{**} -continuous (resp. contra- rg α -continuous) function.

Corollary("- £ 7):

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\mu)$ be two function. Then, their composition gof: $(X,\tau) \rightarrow (Z,\mu)$ is

(*i*) contra- $rg\alpha^*$ -continuous if f is strongly $rg\alpha$ -continuous and g is contra- $rg\alpha^{**}$ - continuous .

(ii) contra- $rg\alpha^{**}$ -continuous if f is a $rg\alpha$ -continuous and g is contra- $rg\alpha^{**}$ - continuous .

Proposition("- ٤):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \mu)$ are both contra- $rg\alpha^*$ -continuous function. Then, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a

(*i*) $rg\alpha$ -continuous.

(ii) rg α -irresolute.

(*iii*) strongly rga-continuous.

Proof:

(*i*)Let *A* be a closed set in Z. By Remark($^{-\xi}$) we get *A* is a rg α -closed set in Z. thus, $g^{-}(A)$ is an open set in Y, and also by Remark($^{-\xi}$) we get $g^{-}(A)$ is a rg α -open set in Y. Since f is a contra- rg α^* -continuous function. Then, $f^{-}(g^{-}(A))$ is a closed set in X.

By Remark($\gamma - \epsilon$) we obtain f'(g'(A)) is a rga-closed set in X.

But f'(g'(A)) = (gof)'(A). Hence, $gof: (X, \tau) \rightarrow (Z, \mu)$ is a rg α -continuous function.

(*ii*) Let A be a rg α -closed set in Z. Thus, $g^{-1}(A)$ is an open set in Y, By Remark($^{7}-^{\xi}$) we get $g^{-1}(A)$ is a rg α -open set in Y. Since f is a contra- rg α^{*} -continuous. Then, $f^{-1}(g^{-1}(A))$ is a closed set in X ,and also by using Remark($^{7}-^{\xi}$) we obtain $f^{-1}(g^{-1}(A))$ is a rg α -closed set in X.

But f'(g'(A)) = (gof)'(A). Hence, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a rg α - irresolute function.

(*iii*) Let A be an rga-open set in Z. Thus, $g^{-1}(A)$ is a closed set in Y, By Remark($^{7}-^{1}$) we get $g^{-1}(A)$ is a rga-closed set in Y. Since f is a contra- rga^{*}- continuous function. Then, $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A)$ is an open set in X. Hence, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a strongly rga-continuous.

Simillary, we prove the following corollary:

Corollary("- £ A):

If f: (X, τ) \rightarrow (Y, σ) and g: (Y, σ) \rightarrow (Z, μ) are both contra- rg α^{**} -continuous functions. Then, their composition gof: (X, τ) \rightarrow (Z, μ) is a

(i) rga-continuous.

(ii) rgα-irresolute.

Proposition("- £ 9):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \mu)$ are both contra- rg α -continuous function and let Y be a $T^* \frac{1}{2}$ space. Then, gof: $(X, \tau) \rightarrow (Z, \mu)$ is a their composition

rgα-continuous function.

Proof:

Let *A* be a closed set in Z. Thus, $g^{-1}(A)$ is a rga- open set in Y. since Y is $T^*\frac{1}{2}$ space and by using corollary ((-1)) we get, $g^{-1}(A)$ is an open set in Y, and also since f is a contra- rga-continuous. Then, $f^{-1}(g^{-1}(A))$ is a rga-closed set in Z. But $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A)$. Hence, gof: $(X,\tau) \rightarrow (Z,\mu)$ is a rga-continuous.

<u>*[±]*-Almoset Contra- rga-Continuous Function:</u>

In the section we introduce new closs of almost continuous function called almost contra- $rg\alpha$ -continuous function and we study their basic properties. **Definition**(*t*-*i*):

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be *almost contra-rga- continuous* if f['](*A*) is rga-closed set in (X, τ) for every regular open set *A* in (Y, σ) .

Proposition(2- 7):

Let RG α O (X, τ) is a closed under arbitrary unions. Then the following statements are equivalent for a function f: (X, τ) \rightarrow (Y, σ).

(*i*) f is almost contra-rg α - continuous.

(*ii*) $f^{-1}(A)$ is rga-open set in (X, τ) for every regular closed set A in (Y, σ) .

(*iii*)For every $x \in X$ and every regular closed set A in Y

containing f(x), there exists a rg α -open set B in X containing x such that $f(B) \subseteq A$.

(*iv*) For every $x \in X$ and every regular open set *G* in Y

not containing f(x), there exists a rg α -closed set H in X containing x such that $f^{-1}(G) \subseteq H$. not

Proof:

 $(i) \Rightarrow (ii)$ Let *A* is a regular closed set in(Y, σ).

Then, A^c is regular open set in(Y, σ). Since f is almost

contra-rga- continuous function. Thus, $f'(A^c)$ is rga-closed set in (X, τ) . But $f'(A^c)=X-f'(A)=(f'(A))^c$.

Hence, f'(A) is a rg α -open set in (X, τ) .

(*ii*) \Rightarrow (*i*)Let A is a regular open set in (Y, σ). Then, A^c is regular closed set in(Y, σ). By assumption we get f⁻¹(A^c) is a rg α -open set in (X, τ). But

 $f'(A^c) = X - f'(A) = (f'(A))^c$. Hence, f'(A) is a rga-closed set in

 (X, τ) . Therefore, f is almost contra-rg α - continuous function.

(*ii*) \Rightarrow (*iii*) Let A be any regular closed set in(Y, σ) Containing f(x). Then, f^{-'}(A) is a rg α -open set in (X, τ),

and $x \in f^{-1}(A)$ by (ii). Take $B = f^{-1}(A)$. Then, $f(B) \subseteq A$.

(*iii*) \Rightarrow (*ii*) Let A is a regular closed set in(Y, σ) and $x \in f'(A)$. From (*iii*) there exists a rg α -open set B in (X, τ) containing x, such that $B_x \subseteq f'(A)$. So we obtain $f'(A) = \bigcup \{B_x : x \in f'(A)\}$.

Hence, $f^{-1}(A)$ is a rga-open set in (X, τ) .

(*iii*) \Rightarrow (*iv*): Let G be a regular open set in Y non-containing f(x). Then, G^c is a regular closed set

containing f(x). By *(iii)*, there exists a rg α -open set B in X containing x such that $f(B) \subseteq G^c$. Thus, $B \subseteq f^{-1}(G^c) = X - f^{-1}(G)$. Then, $f^{-1}(G) \subseteq X - B$. Take H = X - B. we obtain that H is a rg α -closed set in X non-containing x such that $f^{-1}(G) \subseteq H$. *(iv)* \rightarrow *(iii)* Let A be any regular closed set in Y

containing f(x). Then A^c is a regular open set in Y non-containing f(x). By (*iv*), there exists a rg α -closed set H in X not containing x, such that $f^-(A^c) \subseteq H$. But

 $f'(A^c) = X - f'(A)$. Hence, $X - f'(A) \subseteq H$. Therefore, $H^c \subseteq f'(A)$.

Then, $f^{-1}(H^c) \subseteq A$. Take $B = H^c = X - H$. Hence,

B is a rg α -open set in X containing x such that $f(B) \subseteq A$.

مجلة كلية التربية الأساسية ، المجلد ١٩ ، العدد التاسع والسبعون

Proposition(2- 7):

Every contra- $rg\alpha$ - continuous function is almost contra- $rg\alpha$ - continuous. *Proof:*

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a contra- rg α - continuous function and let A be a regular open set in Y.Since every regular open set is an open set. Thus, A is an open set in Y and also since f is a contra- rg α - continuous. Then, f'(A) is a rg α -closed set in X. Hence, a function f is almost contra- rg α - continuous.

Corollary(±- ±):

Every contra- continuous (resp. contra- α - continuous) function is almost contra- rg α - continuous.

Proof:

It follows from the proposition $(^{\tau}-^{\tau})$ and proposition $(^{\xi}-^{\tau})$.

Corollary(٤- ٥):

Every contra- $rg\alpha^*$ - continuous (resp. contra- $rg\alpha^{**}$ - continuous) function is almost contra- $rg\alpha$ - continuous.

Proof:

It follows from the corollary (7-17) –step-ii- (resp. from proposition

 $(^{\mathsf{r}}-^{\mathsf{r}}\xi)$) and proposition $(^{\xi}-^{\mathsf{r}})$.

<u>Remark(٤- ٦):</u>

The converse of proposition $(\xi - \gamma)$ and corollaries $(\xi - \xi)$, $(\xi - \circ)$ respectively, need not be true, as seen from the following example

Example(٤- ۱) :

Let X= Y ={a, b, c, d} with topologies τ = {X, ø, {a}, {b}, {a, b}, {a, b, c}}. And σ = {Y, ,ø, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, b, d}} Define f: (X, τ) \rightarrow (Y, σ) by f(a)= f(d)=c, f(b)=b and f(c)=d. It

easy seen that f is almost contra- rga- continuous function, but is not contracontinuous(contra- α - continuous, contra-rga- continuous, contra- rga^{*-} continuous and contra- rga^{**}- continuous) function

respectively. Since the set {b } is an open set and $rg\alpha$ -open set in (Y, σ) but f⁻¹ ({b })= {b } is not closed (resp. α -closed and $rg\alpha$ -closed) set in (X, τ).

Proposition(*t- V*):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a rg α -irresolute and g: $(Y, \sigma) \rightarrow (Z, \mu)$ is almost contrarg α -continuous function. Then their composition

gof: $(X, \tau) \rightarrow (Z, \mu)$ is almost contra- rg α -continuous function.

Proof:

Let A be a regular open set in Z.Thus, $g^{-}(A)$ is a rga-closed set in Y. Since f is rga-irresolute function. Then $f^{-}(g^{-}(A))$ is rga-closed set in X.

But f^{-'}(g^{-'}(A))= (gof)^{-'}(A). Hence , gof: (X , τ) \rightarrow (Z , μ) is almost contra- rgacontinuous function.

Simillary, we prove the following corollary:

Corollary(2- 1):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a strongly rg α -continuous and

g: $(Y,\sigma) \rightarrow (Z,\mu)$ is almost contra- rg α -continuous . Then ,their composition gof: $(X,\tau) \rightarrow (Z,\mu)$ is almost contra- rg α -continuous function.

Proposition(f- 9):

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a rga-continuous function, g: $(Y, \sigma) \rightarrow (Z, \mu)$ is almost contra- rga-continuous function. and Y is a T^{*1/2} space. Then their composition gof: $(X, \tau) \rightarrow (Z, \mu)$ is almost contra- rga-continuous function.

Proof:

Let A be a regular open set in Z.Thus, $g^{-1}(A)$ is a rg α -closed set in Y.Since Y is a $T^* \frac{1}{2}$ space and by using

Proposition($({}^{-\circ})$) we get $g^{-}(A)$ is a closed set in Y and also since f is a rgacontinuous. Then, $f^{-}(g^{-}(A))$ is rga-closed set in X.

But f^{-'}(g^{-'}(A))= (gof)^{-'}(A). Hence, gof: (X, τ) \rightarrow (Z, μ) is almost contra- rgacontinuous function.

Proposition(٤- ١٠):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ and g: $(Y,\sigma) \rightarrow (Z,\mu)$ be any two function .Let X, Y are both $T^* / 2$ space. Then gof: $(X,\tau) \rightarrow (Z,\mu)$ is almost continuous if g is almost contra- rga-continuous function and f is contra- rga-continuous.

<u>**Proof:**</u> Let A be a regular open set in Z.Thus, $g^{-'}(A)$ is a rga-closed set in Y. Since Y is a $T^* \frac{1}{2}$ space and by using Proposition($(^{\circ}-^{\circ})$) we obtain

 $g^{-'}(A)$ is a closed set in Y. since f is a contra- rga-continuous function. Then, $f^{-'}(g^{-'}(A))$ is rga-open set in X and also since X is $T^{*1/2}$ space and by using corollary ((-)) we get $f^{-'}(g^{-'}(A))$ is an open set in X.

But $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A)$. Hence , gof: $(X, \tau) \to (Z, \mu)$ is almost continuous function

Simillary, we prove the following corollary. Corollary(ξ - 1):

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \mu)$ be any two functions, Let X, Y are both $T^{*1/2}$ space. Then their composition gof: $(X, \tau) \rightarrow (Z, \mu)$ is almost continuous function if g is almost contra-rg α -continuous and

(*i*) f is contra- $rg\alpha^{**}$ -continuous.

(*ii*) f is contra- $rg\alpha^*$ -continuous.

<u>Remark(٤- ١٢) :</u>

From the above discussion and know results we have the following implications :

Digram(1) Summarized The Relationships Between Contra-rga -Continuous Function Types

<u>References</u>

- 1-Dontchev. J;" Contra- Continuous Function And Strongly S-closed Spaces ", Internat .J.Math.Sci., 19(7) (1997), T.T.T..
- Y-Dontchev.J; " Survey On Preopen Sets ", The Proceeding of the Yatsushira Topological Conforence, 1994, 1-14.
- "- Dontchev.J; and Noiri . T; " Contra semi continuous Function ", Math, Pannonice 1.(1999), 109-174.
- ^{ξ}-Jafari .Sand Noiri,T ; " Contra – α -continuous Function Between Topological Spaces ", Iranian Int .J.Sci.^{γ}(γ ··), $\gamma \sigma_{-}\gamma \gamma$.
- •-Njastad .O; " On Some Classes Of Nearly Open Sets ", Pacific J.Math ., 10(1970), 971-97.
- ۲-Palaniaappan . N and Rao .K,C ; " Regular Generalized Closed Sets ", Kyungpook , Math .J. , ۳۳(۱۹۹۳), ۲۱۱-۲۱۹.
- V-Singal .M.K and Singal . A.R ;" Almost Continuous Mappings " Kyungpook , Math .J. , "(197A), ""-V" .
- ^-Sreeja. D and Janak.C;"On Contra –πgb-Continuous Functions and Approximately –πgb- Continuous Functions ", Intermational Journal of Statistika and Mathematical, E-ISSN: ^{ΥΥ έ 9}-^Λ[·]·^o, volume ¹, Issue, ^Υ·¹) pp. ^٤⁻^o</sub>.
- Stony .M; "Application Of The Theory Of Boolean Ring to General Topology", Trans, Amer. Math Soc., £1(1977), 775-5A1.
- 11-Vadivel, A and Vairamanickam, K.;" rgα-Continuous Maps and Some Of Their Properties", Acta Ciencia , India, (^Υ· ^۱·).

المستخلص :

الهدف *الرئيسي من هذا البحث هو در اسة بعض الصفوف الجديدة من الدوال ضد المستمرة و هي* (*الدالة ضد المستمرة – rgα و الدالة ضد المستمرة -*rgα والدالة ضد المستمرة -**rgα)في الفضاء التبولوجي وقدمنا بعض خواصها والعلاقات فيما بينها وكذلك سنعرف وندرس نوع اخر من الدوال ضد المستمرة - rgα*-تدعى الدوال-rgα - ضد المستمرة تقريباً.