
Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 798    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

Performing Compression and 

Encryption Simultaneously in Data 

Transmission   
Hind Kuhdair Abbass 
Computer Science Department, 

College of Education (Ibn - Haitham), 

University of Baghdad 

ABSTRACT 
     The main goals of this paper is to preserve data confidentiality, integrity 

and reduce the redundancy in data representation when transmitting data 

across a public computer network. The basic of this research is to develop 

a method for combining the operation of compression and encryption on 

the same set of data to perform these two operations simultaneously 

instead of separately. This is achieved through embedding encryption into 

compression algorithms since both cryptographic ciphers and entropy 

coders bear certain resemblance in the sense of secrecy.  
     The proposed system is implemented using Microsoft visual C#.NET 

programming language. 

1- INTRODUCTION 
     Data compression and ciphering are essential features when digital data is 

stored or transmitted over insecure channels. Usually, we apply two sequential 

operations: first, we apply data compression to save disk space and to reduce 

transmission costs, and second, data ciphering to provide confidentiality. This 

solution works fine to most applications, but we have to execute two expensive 

operations, and if we want to access data, we must first decipher and then 

decompress the ciphertext to restore information [1]. 

     The major problem existing with the current compression and encryption 

methods is the large amount of processing time required by the computer to 

perform the tasks. To lessen this problem, combine the two processes into one. 

To combine the two processes, new techniques will be introduced in this paper. 

The idea is confusing to Initial values of the LZW dictionary. Before one begins 

to submit the proposed methods, more security methods will be reviewed for 

generating random numbers. Blum Blum Shub Generator was chosen as a 

cryptographically secure pseudorandom bit generator (CSPRBG). Some 

additions are made for this method, but without prejudice to the substance of the 

method. The purpose of this addition is to be appropriate for the work of secure 

LZW at the same time. 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 797    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

Table 1: Example Operation of BBS Generator 

 

2- Cryptographically Secure Pseudo-Random Sequences 
     Cryptographic applications demand much more of a pseudo-random-

sequence generator than do most other applications. Cryptographic randomness 

doesn’t mean just statistical randomness, although that’s part of it. For a 

sequence to be cryptographically secure pseudo-random, it must also have this 

property: It is unpredictable. It must be computationally infeasible to predict 

what the next random bit will be, given complete knowledge of the algorithm or 

hardware generating the sequence and all of the previous bits in the stream [2].  

3- Blum Blum Shub Generator 
     A popular approach to generating secure pseudorandom number is known as 

the Blum Blum Shub (BBS) generator named for its developers. It has perhaps 

the strongest public proof of its cryptographic strength. The procedure is done as 

follows. First, choose two large prime numbers, p and q, that both have a 

remainder of 3 when divided by 4. That is, p ≡ q ≡ 3 (mod 4). This notation, 

simply means that (p mod 4) = (q mod 4) = 3. For example, the prime numbers 

7 and 11 satisfy 7 ≡ 11 ≡ 3(mod 4). Let  n = p * q. Next, choose a random 

number s, such that s is relatively prime to n; this is equivalent to saying that 

neither p nor q is a factor of s. Then the BBS generator produces a sequence of 

bits Bi and Li according to the following algorithm: [3] 

Algorithm 1: Blum Blum Shub (BBS) generator 

INPUT: Two large prime numbers, p and q and a random number s. 

OUTPUT: Secure pseudorandom number. 

X0 = s2 mod n 

For i = 1 to ∞ 

   Xi = (X i-1)2 mod n 

   Bi = Xi mod 2 

   Li= Xi mod 252 
     Thus, the least significant bit is taken at each iteration and stored in Bi. The 

Bi is significant for determine the number of null strings which is added to LZW 

initial dictionary to confuse it. The last step in the above algorithm is suggested 

for secure LZW work. Table (1), illustrates an example of BBS operation. Here, 

n = 112241 = 383 x 503 and the seed s = 101355. 

 

i Xi Bi iL 

0 20809 1 31 

1 103131 1 8 

2 188781 0 20 

3 98007 0 137 

0 79992 1 228 

1 180011 1 9 

mk:@MSITStore:F:/Research/Security/New%20Folder/cryptography-and-network-security-4th-edition.9780131873162..chm::/0131873164/ch07lev1sec4.html#ch07table02#ch07table02


Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 799    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

7 70709 1 91 

8 01773 0 77 

7 79002 0 10 

9 177790 0 110 

10 188007 0 190 

11 138922 1 39 

12 123181 0 172 

13 7730 0 210 

10 110377 1 11 

11 10773 1 111 

17 133011 1 71 

18 107071 0 07 

17 01780 1 211 

19 138181 0 177 

20 07070 1 19 

21 90839 0 0 

22 113770 0 17 

23 190070 1 79 

20 70971 1 21 

     The BBS is referred to as a cryptographically secure pseudorandom bit 

generator. A CSPRBG is defined as one that passes the next-bit test, which, in 

turn, is defined as follows: A pseudorandom bit generator is passed to the next-

bit test if there is not a polynomial-time algorithm that, an input of the first k bits 

of an output sequence, can predict the (k + 1)st bit with probability significantly 

greater than 1/2. In other words, giving the first k bits of the sequence, there is 

not a practical algorithm that can even allow you to state that the next bit will be 

1 (or 0) with probability greater than 1/2. For all practical purposes, the 

sequence is unpredictable. The security of BBS is based on the difficulty of 

factoring n. That is, giving n, its two prime factors p and q are needed to 

determine [3]. 

0- Basic Lempel-Ziv-Welch 
     Many programs use a version of Lempel-Ziv created by Terry Welch in 

1184.This version is pretty simple and easy to code, so it is frequently included 

in many simple compression schemes. It is also relatively good, although it takes 

its time building up the dictionary [4]. 

     Its main feature is eliminating the second field of a token, and LZW token 

consists of just a pointer to the dictionary. 

 (A) LZW Encoding  

     To best understanding of LZW will temporarily forget that the dictionary is a 

tree, and will think of it as an array of variable-size strings. In theory, the 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 900    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

dictionary is built from scratch and initially is empty. However, if  the  alphabet 

of a source is known  , the  alphabet  and  other  commonly  used symbols  are  

stored  as  the  first  252  entries  in  the dictionary. In other words, the 

dictionary usually contains 252 entries (e.g.  ASCII codes) of single characters 

initially. 

     The principle of LZW is that the encoder inputs symbols are one by one and 

they accumulate them in a string I. After each symbol is input and is 

concatenated to I, the dictionary searches for string I. As long as I is found in the 

dictionary, the process continues. At a certain point, adding the next symbol x 

causes the search to fail; string I is in the dictionary but string Ix (symbol x 

concatenated to I) is not. At this point the encoder is: 

(1) Outputs the dictionary pointer that points to string I. 

(2) Saves string Ix (which is now called a phrase) in the next available 

dictionary entry.  

(3) Initializes string I to symbol x. 

Algorithm 2: LZW Encoding  

1- I ← " " 

2- While not EOF do  

3-     x ← read_next_character ( )  

4-     If   I + x   is in the dictionary then  

5-           I ← I + x  

2-     Else  

7-         Output the dictionary index for word  

8-         Add   I + x   to the dictionary  

1-         I ← x  

10-   End if  

11- End while  

12- Output the dictionary index for word 

 (B) LZW Decoding 

     In order to understand how the LZW decoder works, at first the three steps 

should be recall the encoder performs each time it writes something on the 

output stream. The decoder starts with the first entries of its dictionary 

initialized to all the symbols of the alphabet (normally 252 symbols). It then 

reads its input stream (which consists of pointers to the dictionary) and uses 

each pointer to retrieve uncompressed symbols from its dictionary and write 

them on its output stream. It also builds its dictionary in the same way as the 

encoder. 

     In each decoding step after the first, the decoder inputs the next pointer, 

retrieves the next string J from the dictionary, writes it on the output stream, 

isolates its first symbol x, and saves string Ix in the next available dictionary 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 901    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

entry (after checking to make sure string Ix is not already in the dictionary). The 

decoder then moves J to I and is ready for the next step. 

1- The Proposed Secure LZW Coding  

     People  often  find  that  LZW  algorithms  are  easier  to  understand  and 

they are  the most  popular ones. Therefore, try to make LZW coding secure by 

maintaining its clarity to be understood [5]. 

     In a codebook type of implementation such as the LZW compression, the 

dictionary consists of strings of characters that have been processed. Firstly, it 

contains all strings of length 1 in alphabetical order. In this case, at first confuse 

the initial dictionary by shuffling all strings of length 1 plus a small number of 

null strings which is determined by the first five bit generated by the 

cryptographically secure pseudo random bit generator. This means the 

maximum number of added nulls is 32. The purpose of including null strings in 

the shuffling is to make chosen plaintext attacks more difficult. Moreover, it 

cripples any unauthorized decompression. Based on the previous discussion, 

encoding input consists of the following steps: 

Algorithm 3: Secure LZW Encoding Ideas 

INPUT: Symbols one by one from source file. 

OUTPUT: The code for input string (only the numbers are output, not the 

strings in parentheses). 

Step 1: Initialize dictionary to contain one entry for each byte. 

Step 2: The encryption key is used to initialize a cryptographically secure 

pseudo random bit and number generator. 

 The first five bits represent the number of added nulls  

 The pseudo random number generated (0-255) is representing the 

location where the nulls will insert in the LZW initial dictionary. 

Step 3: Initialize the encoded string with the first byte of the input stream. 

Step 0: Read the next byte from the input stream. 

Step 1: If the byte is an EOF, go to step 8. 

Step 7: If concatenating the byte to the encoded string produces a string that is 

in the dictionary: 

 concatenate the byte to the encoded string  

 go to step 4 

Step 8: If concatenating the byte to the encoded string produces a string that is 

not in the     dictionary:  

 add the new sting to the dictionary  

 write the code for the encoded string to the output stream  

 set the encoded string equal to the new byte  

 Go to step 4 

Step 7: Write out code for encoded string and exit. 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 902    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

7- Encoding Explanation with Example 
1- Add all ASCII characters in the table from 0-255. Let the output of CSPRBG 

in (table 4.4) be dependable in this example. 

2- Determine number of added nulls: Take the first five bits of Bi from 

CSPRBG and convert it to decimal number:  (11oo1)2 ≡ (25)01 ≡ number of 

added nulls. 

3- Determine the location of added nulls in LZW initial dictionary: After 

knowing the number of added nulls, take pseudorandom numbers from 

CSPRBG output (Li). These pseudorandom numbers represent the position of 

added nulls in the LZW initial dictionary. In this example, take the first 

twenty five pseudorandom numbers from (Li). 

Cryptographically secure pseudorandom numbers in this example are: [31, 7, 

24, 132, 227, 1, 15, 22, 14, 150, 114, 31, 182, 210, 15, 151, 81, 42, 211, 188, 

11, 4, 12, 81, and 21] 

0- Confuse the LZW initial dictionary based on the introduced information from 

above steps. The secure LZW will depend on the confused dictionary to 

coding text data. 

1- Perform the reminder LZW processing steps in conventionality way.  

     Sample string used to demonstrate the algorithm is illustrated in table (2). 

You can see that the first pass through the loop, a check is performed to see if 

the string "/A" is in the table. Since it is not, the code for '/' is output, and the 

string "/A" is added to the table. Since we have 252 characters plus specific 

number of nulls (for security purpose) already defined for codes 0-280 (252 

char+25 nulls =281 code), the first string definition can be assigned to code 

281. After the third letter, 'B', has been read in the second string code, "AB" is 

added to the table, and the code for letter 'A' is output. This continues until in the 

second word, the characters '/' and 'A' are read in, matching string number 281. 

In this case, the code 281 is output, and a three character string is added to the 

string table. The process continues until the string is exhausted and all of the 

codes are output. 

Input String = /ABC/AB/ABB/ABD/ABE 

Code 

Output 
New Entry In Dic? 

Character 

Input 

Code 

Output 
New Entry In Dic? 

Character 

Input 

/AB(285) 287(/ABB) N /ABB   Y / 

  Y B /(51) 281(/A) N /A 

  Y B/   Y A 

B/(282) 288(B/A) N B/A A(78) 282(AB) N AB 

  Y A   Y B 

  Y AB B(71) 283(BC) N BC 

AB(282) 281(ABD) N ABD   Y C 

  Y D C(80) 284(C/) N C/ 

D(81) 210(D/) N D/   Y / 

  Y /   Y /A 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 903    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

Table 2: Trace the Operations of Secure LZW Encoding Algorithm 

  Y /A /A(281) 285(/AB) N /AB 

  Y /AB   Y B 

/AB(285) 211(/ABE) N /ABE B(71) 282(B/) N B/ 

  Y E   Y / 

E(82)   EOF   Y /A 

      Y /AB 

 

 

8- Secure LZW Decoding Algorithm 
     It shouldn't be a big surprise that secure LZW data is decoded better than 

how it is encoded. The dictionary is initialized and confused in the same 

encoding manner so that it contains an entry for each byte plus nulls entry. Only 

the owner of correct key can confuse the LZW initial dictionary in proper way. 

New code words are read from the input stream, one at a time and string 

encoded by the new code is output.  Based on the above previous discussion, 

decoding input consists of the following steps: 

Algorithm 0: Secure LZW Decoding Ideas 

INPUT: Symbols one by one from compressed file (which consists of   pointers 

to the dictionary). 

OUTPUT: Uncompressed symbols.  

Step 1: Initialize dictionary to contain one entry for each byte. 

Step 2: The encryption key is used to initialize a cryptographically secure 

pseudo random bit and number generator. 

 The first five bits represent the number of added nulls  

 The Li column value in CSPRBG represents the location where the nulls 

will insert in the LZW initial dictionary. 

Step 3: Read the first code word from the input stream and write out the byte it 

encodes. 

Step 0: Read the next code word from the input stream. 

Step 1: If the code word is an EOF exit. 

Step 7: Write out the string encoded by the code word. 

Step 8: Concatenate the first character in the new codeword to the string 

produced by the previous codeword and add the resulting string to the 

dictionary. 

Step 7: Go to step 4. 

7- Decoding Explanation with Example 
     The algorithm above is just like the compression algorithm. It generates the 

same cryptographically secure pseudorandom bit, this is done only when having 

the encryption key. Use the output of CSPRBG to confuse the initial dictionary. 

Add a new string to the string table each time it reads in a new code. It needs in 

http://michael.dipperstein.com/lzw/#encoding
http://michael.dipperstein.com/lzw/#dictionary


Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 900    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

addition to that to translate each incoming code into a string and send it to the 

output.  

     Table (3) illustrates the output of the algorithm given and the input created 

by the compression earlier in the section. The output string is identical to the 

input string from the compression algorithm. Note that the first 252 codes plus 

specific number of nulls are already defined to translate single character strings, 

just like the compression code. 

     Output string is [/ABC/AB/ABB/ABD/ABE] and this is equal to encoding 

input string. It is possible that it is in the mind of the reader which leads to an 

important question. What are the results that will be obtained by unauthorized 

persons in the case of trying to decompress the data compressed by secure LZW 

coding? 

     This question will be answered in practice through the obtained results in 

table (4), which explains what the results gets by the people who are not 

authorized in the case of them trying to spy on the data compressed by the 

secure LZW coding in previous example. 

Input Codes:   / A B C 271 B  271  277 272  D  271  E 

Character 
Input 

In Dic? New Entry 
Code 

Output 
Character 

Input 
In Dic? New Entry 

Code 
Output 

/ Y   /AB Y   

/A N 280(/A) /(95) /ABB/ N 282(/ABB/) /AB(289) 

A Y   B/AB N 288(B/AB) B(25) 

AB N 282(AB) A(28) /AB Y   

B Y   /ABD N 285(/ABD) /AB(289) 

BC N 282(BC) B(25) D Y   

C Y   D/AB N 251(D/) D(80) 

C/A N 282(C/) C (81) /AB Y   

/A Y   /ABE N 250(/ABE) /AB(289) 

/A B N 289(/AB) /A (280) E Y   

B Y   EOF   E(82) 

B/AB N 282(B/) B(25)     

Table 3: Trace the Operations of Secure LZW Decoding Algorithm 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 901    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

Table 0: Trace of Decoding Operations from Unauthorized View of Point   
 

 

Input Codes: 95 87 85 78 172 85  179  172 171  72  179  71 

Character Input  In Dic? New Entry  Code Output  

; Y   

;N N 192(;N) ; (95) 

N Y   

NO N 198(NO) N(87) 

O Y   

OP N 197(OP) O (85) 

P Y   

P 172 STOP 

     The unauthorized persons will stop and cannot proceed because of lack of 

knowledge the value of (281) and all the unauthorized person got was [; N O]. 

This shows the strength of security enjoyed by the proposed method against 

those trying to get the data compressed by the secure LZW coding. 

9- Evaluating Compression Performance 

     The Secure Lempel Ziv and Welch methods maintain the effectiveness of 

their respective antecedents. The dictionary built in the secure LZW method is 

almost identical to the dictionary built in the original compression algorithm. 

These imply that the efficacy of the compressions is not compromised by the 

proposed method. 

10- Security Strength 
     The proposed method introduces more proper security strength than 

substitution or transposition ciphers. Without the identical crypto-compression 

key, the decompression process will be disabling and the cryptanalysis can’t 

even be completed.  

     A brute-force attack involves trying every possible key until an intelligible 

translation of the ciphertext into plaintext is obtained. On average, half of all 

possible keys must be tried to achieve the success. To prove cryptanalysis 

difficult for the proposed approach, the sample of text is taken and it is 

encrypted in different encryption algorithms such as DES (Data Encryption 

Standard), triple DES, AES (Advanced Encryption Standard) and the proposed 

approach SLZW (Secure Lempel Ziv and Welch).  

     Table (5) illustrates how much time is involved for various key spaces. 

Results are shown for four binary key sizes. The 52-bit key size is used with the 

DES algorithm, and the 128-bit key size is used for triple DES. The minimum 

key size specified for AES is 128 bits. The 252-bit key size is used with the 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 907    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

Table 1: Average Time Required for Exhaustive Key 

Search 

proposed SLZW .For each key size, the results are shown assuming that it takes 

1 ms to perform a single decryption, which is a reasonable order of magnitude 

for today's machines. With the use of massively parallel organizations of 

microprocessors, it may be possible to achieve processing rates many orders of 

magnitude greater.  

 

11- Conclusions  
     The complete system design has been implemented and tested, the results are 

found as they were expected. The results proved the correctness of system 

design and its reasonable considerations and choices. This work arrives at the 

following conclusions:  

1. The main theme behind the design of this system is implemented to get 

the best security performance and best-case compression ratio via the 

abilities of strongest for lossless compression and cryptography 

principles.  

2. The common encryption methods generally manipulate an entire data set, 

and most encryption algorithms tend to make the transfer of information 

more costly in terms of time and sometimes bandwidth. Thus, users pay a 

price for security proportional to their desired level of security. The 

proposed method of simultaneous encryption and compression may serve 

to remedy the security and speed issues that currently concern the 

multimedia world. 

3. In particular, the secure LZW method is based on the cryptographically 

secure pseudorandom bit generation function, which gives a level of 

security that cannot be ignored because they generate numbers very 

difficult to predict them. 

4. The compression and encryption processes are complicated processes. 

One of the advantages of the proposed method is that the processes are 

done transparently, their details are buried, and the user should not be 

aware that these processes are taking place, further than the requirement 

to enter his password. 

5. Experimental results added levels of security over the existing 

compression method (LZW).  

Encryption 

Algorithm  

Key size 

(bits) 

Number of alternative 

keys 

Time required at 1 

decryption/ s 

DES 52 252 = 7.2 x 1012 255   ms = 1142 years 

Triple DES 128 2128 = 3.4 x 1038 2127  ms = 5.4 x 1024 years 

AES 128 2128 = 3.7 x 1050 2127 ms = 5.1 x 1032 years 

SLZW 252 2252 = 1.1 x 1077 2255   ms = 1.8 x 1023 years 



Performing Compression and Encryption Simultaneously in Data Transmission... 
Hind Kuhdair Abbass 

 

 908    والسبعون  التاسع العدد،   91 المجلد ، الأساسية التربيةكلية  مجلة

2. all test results are found as close as they were expected. The results 

proved the correctness of system design and its reasonable 

considerations and choices. 

REFERENCES 
 [1] Milidiu, R.L., Mello, C.G, Fernandes J.R. Adding security to 

compressed information     retrieval systems, SPIRE - String Processing 

and Information Retrieval, Chile, 2001. 

[2] Bruce Schneier, “Applied Cryptography: Protocols, Algorithms, and 

Source Code in C”, 2nd Edition, John Wiley & Sons, Inc., 1112. 

[3] William Stallings, “Cryptography and Network Security: Principles 

and Practices”,  International 4th Edition, Prentice Hall, November 12, 

2005.  

[4] Peter Wayner, “Data Compression for Real Programmers”, Morgan 

Kaufman, Inc., 1111.  

[5] Ida Mengyi Pu, “Fundamental Data Compression”, Elsevier Inc, 

2002. 
  

 

 المستخلص
ت قيددا ال دديسلا ة ددديالا الايمرددم  اللي دد لا ةتق دددي   الهدد    اليسي ددذ لهددبا  ال  ددد   دد       

ةذلد  ادخ لديط ترد سي التكيار بتلثيل الايمرم  فذ اثنمء رق هم عاي ش كم  ال م  ب العمالا. 
جلددب بدديخ الوددتش ةالتيددليي فددذ اللجل عددلا رل ددهم اددخ الايمرددم   ةتنليددب العل يتدديخ فددذ تطيسقددلا 

ت ةاح  ب لا اخ تنليب م انليدتيخ. ة با يت قا عخ طيسا توليخ التيليي فدذ ل ارمايدم  ةق
 الوتش.

 .(   Visual C#.NETرلب  با النظمم ب ا رلا لتلا الاياجلا  ذ شمرب )     
 


