
Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  35 

Secure Connection for Private Local 

Area Network 

Anoar Abbas htaab 

AL-Mustanseryia university 

 

Abstract: 
    With current concerns over computer security, particularly related to 

network intrusions, misuse, and even cyber-terrorism, there is a need for tools to 

monitor and analyze systems to identify when an attack is occurring.[1] 

This paper represents the design and implementation of secure connection 

for private Local Area Network (LAN )by build Intrusion Detection System 

(IDS) depend on the rule-based technique for detection the intruder and to 

generate the rules of detection extract from the collection of analysis and 

information of log file and events in the network. The rule based intrusion 

detection system is able to learn and improve their rules with reaction of the 

network events, four techniques were presented to work in the IDS. The first is 

the packet filtering that  was used to prevent unauthorized user from pass 

through network ,second  the rule-based inference engine used to generate rules 

and for detection intrusions. The third technique is the session analysis that used 

to detect the session between users and the server, fourth is the watermark in the 

authorized user packet. This technique help the system to detect the 

unauthorized user in the start it work and reduce the error or the intrusion 

attacks.  

Many attack types especially in the TCP protocol were detected with high 

resolution. Finally, we must say that the rule–based intrusion detection system 

give better detection efficiency from the statistical intrusion system for many 

types of attack[2].   

  

1. Introduction : 

          The proposed system operation started by initializes the network services 

and domain of the network for controlling the network and services. After 

initialization stage, the proposed system start the collection information 

operation about the users connected to the network using the NetBIOS names 

and packet capturing technique. The information about the user will detect and 

analyze to accept the authorized users and refuse the unauthorized user [1]. 

After the basic terms have been presented we can introduce the proposed 

model in detail. Figure (1) shows the basic elements of the proposed system 

model and Figure (2)  shows the system  components: 

 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Initialize the Profile of the Users and Learning phase: 
       The profile here is represented by two files which are the ‘log files’, the first 

one is initial log file which initialized at the beginning of the project by the 

administrator and could not be modified only on his permission. 

  The second file is the running files that to be constructed at the first 

session and then modified along each session. It contains the audit records 

Client1  

Clien2  

Client n  

 

Packet       expert      Learning     
  

Capture       Rules       engine    
 

   

 

 Profiles + anomaly records  

IDS 

Server 

Figure (1) General Proposed System Structure 

Detection 
Engine 

 

 
TCP Packets 

Feature Selector 

Allowing 

Decision Table 

Network 

Information 

Analysis 

Auditing File 

(Intrusion 

States) 

Security 

Officer 

 

Action/reports 

Figure (2) IDS Structure 

Sensor 

 

Decision  
Engine 

Feature 
Analysis  

  Facts 

Generate Audit 

Record 

Session Analysis 
Inference Engine 

Capturing Authorized 
 

User  

Profile Rule Base 

Knowledge 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  33 

gained from the capture and analysis of the incoming packets. The profile 

consist of the following fields: 

<User name, Password, Applications Vector, Time-start, Time-end, Day-work, 

Tricky-information>. 

User name: the name is given to user 

Password:   authenticated field to user 

Applications-vector: vector split into 6 fields refers to applications that the user 

has been authorized to access it. 
           Application 1 : represent the HTTP Service field. 

           Application 2:  represent the  Email  Service field. 

           Application 3: represent the  Server Messages field . 

           Application 4: represent the Chat services field . 

           Application 5: represent the FTP service . field 

Time-start: It’s Date-field (registered in The time that  user starts his 

operations). 

Time-end: It’s Date-field (end time of user connect). 

Tricky-questions: It’s a text field contain information collected to personalize 

the subject like name of first school, name of grand father ..etc. 
Input   : Initialize status 

Output:  Detection users 

Initialized the network connected. 

Starts capturing and ping operations for detect connected users 

Check the watermark in the packet if not found  

  Then apply the filter packet algorithm   

  Else goto step 4 

Detect the users' names and passwords using the NetBIOS protocol.    

Get the (IP, port, subnet mask, user name, password, time, no. of hours, personal 

information) 

Collected the status for users  

Apply the administration rules for each user  

Save the status to records 

End 

 To start connect user to the server, the user must enter the authentication 

information as (username and password)  .The system will get the name and 

password of user and check to see if it is true or not . 

Second function in the proposed system initializes the learning phase to update 

rules for any new events. Where, the proposed system will load the saved rules 

and the generation rule algorithm for starting analyzing and generation of the 

rules for the analyzed events.  

 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  35 

3. Analyzing and Decision Making Stage 
   In this stage, the proposed system starting analyzes operation for 

the incoming packets to determine the events and operation for each user 

connect to the network. Also, the decision will make depending on the collected 

information about the users and administration rules Generally the basic 

flowchart of the proposed system that is as shown in Figure (3) . 

3.1 Packet Capture : The first phase of the analyzing stage is the packet 

capture through which the network depends upon to monitor the traffic in order 

to reveal needed information, the values for each  packet header fields packet 

capture the following field[3]: 

H_length1: the IP header length, which is an integer value that defines the  total 

length of the TCP header in four-byte words. 

H_length2: the IP header length which is an integer value that defines the total 

length (header plus data) of the IP TCP n bytes. 

Source_destination:  it’s an array of integer values represent the source and 

destination address . 

S_port_D_port : it’s an array of integer values represent the source port and 

destination port. 

Flag1: represent SYN flag, which may be 0 or 1 depends on the value of flag in 

received packet. 

Flag 2: represent ACK, which may be 0 or 1 

Flag 3: represent FIN flag, which may be 0 or 1 

Flag 4: represent PSH flag, which may be 0 or 1 

Flag 5: represent URG flag, which may be 0 or 1 

Seq1: pointer to the first byte of the data in packet segment. 

  The packet capture is concerned with capture the every packet that is 

originating from any node in the network that can be captured.  

The flags field in the TCP header check to display the status of packet. The 

algorithm applied to accomplish the captured function. 

3.2   Packet Filtering : The packet filter provides better access control  

mechanisms and either accept or reject packets passing through the 

network. the proposed system will apply the packet filter to prevent the 

unauthorized users from working on network. This algorithm based on 

packet information fields: Source IP address, Destination IP address, 

Protocol number, Source port number, and Destination port number and 

users profile[3]. 

3.3  Anomaly Detection (Session Detection) 
       In this function, the system will try to recognize the session of the user does 

it. The session type can determine the application program that is needed to 

work for each user, there are a rule that determines the sets of authorized 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  35 

application. The authorized application were recorded into the user record 

profile. 

  The user application can be determine from the session packets or 

NetBIOS packets. The proposed system will analyze the NetBIOS packet to 

determine the tasks and application of users.  

 

3.4 Misuse Detection (Feature Extraction ): 
          This type of detection involves extraction of the important parameters 

(features) and other information from network packets, the feature extraction 

will extract These selected features are used in Pre-Detector component [4]. The 

structure of FS is shown in Figure( 3). 

 
Figure( 3) Feature Selector Component. 

The features, in this algorithm, ICMP and TCP (SYN flooding attack, 

Address impersonation, Sequence number guession, session Hijacking, SYN 

Flood Attack, Ping of Death, Smurf Attack, Land Attack, and Teardrop Attack), 

are such as source IP, source port number, destination IP address, destination 

port number, TCP flags, window size, the interval value of two adjacent 

sequence numbers, fragment pointer, and interval time of two-consecutive 

packets. These features have been priory defined in the predefines feature 

component. 

  The predefined feature (K) is in the form of 6-tuples of parameters. Its 

characteristic can be defined system as follows. 

K = (Flags, Ports, IPs, W, Fragment, ∆SEQ, ∆T) 

∆SEQ is an interval value of two sequence numbers. 

∆T is an interval time of two consecutive TCP segment. 

The algorithm applied to accomplish the captured function is: 

Input: sequence Packets. 

Output: packet Information 

 Check the network traffic  

: Copy the packets passing through network.  

Analysis the packet (header (IP, TCP, and ICMP)) 

calculate the SEQ and T for the packet sequence. 

Display results 

Save results 

End 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  35 

4.  Attack Detection 
   The proposed system was designed to determine the intrusion attack type. 

Attack detection operation is a preliminary analysis part of detecting phase. It 

analyzes events with a set of detection rule [5]. To identify intrusive patterns, by 

considering the features of K, sequence of packets must conform to several 

conditions. For example, if the SYN flooding attacks, a packet must have the 

SYN flag in its TCP header. For each packet we have the same destination IP 

address (IP) and the same destination port (Port). Finally, the packet must have 

the same window size (W). These conditions are described with the following 

rule: 

START: IF flag is SYN THEN 

IF IP are same THEN 

       IF Port are same THEN 

           IF W are same THEN 

                  Goto Decision algorithm 

            ELSE goto START 

        ELSE goto START 

ELSE goto START 

ELSE goto START 

 The other attack of TCP also can be handling with same way. For 

example the Land attacks. this type of denial of service attack and depend on the 

TCP packet with a spoofed source address and port matching that of the 

destination. So, the rule of this type of attack is as shown: 

START: IF flag is SYN THEN 

IF Source IP = Destination IP THEN 

       IF Source Port= Destination Port THEN 

          IF no ICMP Packet type echo request is generated from the source IP 

address then smurf attack occurs  

               IF no more packets then  

             EXIT 

      END 

END 

4.1 The Proposed Rule-Based Learn Operation 
The proposed learn operation consists of a rule translator, a library of 

runtime routines, and a set of collection routines. When using learn operation, 

rules and facts are written in the rule-based production rule specification format. 

The rule translator is then used to translate the specification into a C++ language 

rule-based system program(as update to the rules file).  

In learning operation, the structure of a fact is specified by the 

administrator through a template definition referred to as a pattern type of rules. 

For example, to define a rule named event that consists of the four fields event 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  35 

type (an integer), return code (an integer), username (a string), and hostname (a 

string) [5]. 

Facts from such a template definition could be constructed through the 

monitoring of audit records and asserted into the factbase for evaluation against 

the available production rules for example of a ptype declaration:  

ptype[event event_type:int, 

return_code:int, 

username:string, 

hostname:string] 

           Fact evaluation is performed by the rule-based inference engine, where 

the attributes of the fact are mapped against the predicate expression(s) of each 

rule antecedent. For example, we may want to determine whether the asserted 

fact represents an unsuccessful login attempt, which we shall refer to form the 

statement in equation(1), S represents the set of all facts known to the rule-based 

fact base, and within which a production rule antecedent postulates the existence 

of a fact e that satisfies specific properties. 

 In the learning operation, the statement in equation (1) placed in the 

antecedent of the rule would be written as in Figure (4). 

The term e :event allows one to assign an alias e to one fact (of possibly several) 

that satisfies the antecedent for the duration of the rule. The plus (+) sign after 

the opening bracket represents an existential quantifier that allows the rule to 

check for any fact that satisfies the conditions of the antecedent. Alternatively, a 

minus (-) sign searches for cases where no fact in the factbase satisfies the 

conditions of the antecedent. For example: 

[-event|username == "GoodGuy"] 

evaluates to true if there is no event in the factbase that has been asserted on 

behalf of “GoodGuy.” 

 

 

 

 

 

 

 

 

The plus and minus tests have corresponding assert and delete actions that 

can appear in the consequent of a rule, to assert a new fact of rule bad_login and 

give its fields initial values, we can write [+bad_login|username = e.username, 

hostname = e.hostname] 

To be deleted from the factbase, a fact must be matched and given an alias in the 

antecedent before it can be deleted in the consequent. This is illustrated in the 

example of a complete rule named Bad Login in Figure (5). 

 
Figure  (4 ) An example of fact matching 

 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  52 

 

 

1 rule[Bad_Login(#10;*): 

2 [+e:event| event_type == login, 

3 return_code == BAD_PASSWORD] 

4 ==> 

5 [+bad_login| username = e.username, 

6 hostname = e.hostname] 

7 [-|e] 

8 [!|printf("Bad login for user %s from \ 

9 host %s\n", e.username, e.hostname)] 

10 ] 

 

 

Figure (5)  An Example Of A Rule Declaration 

 

The Bad Login rule in Figure (5) also demonstrates how the evaluation of 

an asserted fact can be used to derive subsequent facts that may themselves 

drive new inferences.  

Using a mathematical notation, we can represent this state transition in 

rule factbase from S to a desired new state S0 as in equation (2). 

)})()(|)(log_{}{(

))_()log()())(((

hostnamehostnameusernameusername

codereturntypeevent

ebebbinbadeSS

passwordbadeineeeventSee



 

…..(2) 

Within parentheses after the rule name (line1), there is a semicolon-

separated list of options. The option #10 means that this rule is given a ranking 

(priority) of 10. Priorities allow one to specify well-defined orders in the 

sequences for rule evaluation, and are primarily used for rules required to be 

evaluated first for initialization purposes, or that must be evaluated last to 

perform rules collection. The star option (*) indicates that the rule is repeatable, 

that is, the rule is allowed to fire repeatedly even if no other rule is fired in 

between. Thus, a key function of the consequent is to alter the state of the 

factbase such that the antecedent is not satisfied indefinitely (e.g., the 

consequent may mark or remove a fact). The arrow delimiter (==>) separates the 

antecedent and the consequent (line 4).  

The [!|...] clause (line 8) within the consequent illustrates how the rule-

based inference engine may call out to native C++ functions should action be 

warranted when the antecedent is evaluated to true. Both inference and action 

can be taken directly within the rule-based inference engine.  

To further improve the performance of the rule-based system, rules can be 

disabled and enabled dynamically through actions in the consequents of rules. A 

rule can even disable itself, which means that it can fire once, at most, unless 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  50 

enabled again by another rule. To disable a rule, we can put the following action 

in a consequent: 

[-# rulename] 

To enable a rule, we can change the minus sign in the above statement to 

a plus sign. In addition, a rule can be declared as disabled from start by adding a 

single minus sign to the list of options after the rule name, for example: 

rule[rulename(#10;*;-): 

Using these features, the preconditioned requirements that can enable or 

disable whole portions of the knowledge base can build, depending on the 

current state of the environment being monitored.  

 

4.1.1  Rule Set for Detection of Failed Authentication Attempts 
Table(1) Shows an example of rule set for detection failed authentication 

attempts [4]. 

Table(1) Rule set for detection failed authentication attempts. 
rule[A1(*): 

[+e:bsm_eventˆA12] 

[?|e.header_event_type == ’AUE_login || 

e.header_event_type == ’AUE_telnet || 

e.header_event_type == ’AUE_rlogin || 

e.header_event_type == ’AUE_rshd || 

e.header_event_type == ’AUE_su] 

[?|e.return_return_value == ’INVALID_USER] 

[+cc: current_bl_cntr] 

[-max_bl_reached] 

==> 

[+bad_login | 

timestamp = e.header_time, 

audit_seq_no = e.msequenceNumber, 

username = "invalid username", 

command = e.header_command, 

etype = e.header_event_type, 

hostname = e.subject_hostname, 

portID = e.subject_port_id, 

processID = e.subject_pid, 

textList = e.textList] 

[/cc| value += 1] 

[$|e:A12] 

] 

 

rule[A2(*): 

[+e:bsm_eventˆA12] 

[?|e.header_event_type == ’AUE_login || 

e.header_event_type == ’AUE_telnet || 

e.header_event_type == ’AUE_rlogin || 

e.header_event_type == ’AUE_rshd || 

e.header_event_type == ’AUE_su] 

[?|e.return_return_value == 

’INVALID_PWD] 

[+cc: current_bl_cntr] 

[-max_bl_reached] 

==> 

[+bad_login | 

timestamp = e.header_time, 

audit_seq_no = e.msequenceNumber, 

username = e.subject_runame, 

command = e.header_command, 

etype = e.header_event_type, 

hostname = e.subject_hostname, 

portID = e.subject_port_id, 

processID = e.subject_pid, 

textList = e.textList] 

[/cc| value += 1] 

[$|e:A12] 

] 

 

rule[A1(*): 

[+e:bsm_eventˆA12] 

[?|e.header_event_type == ’AUE_login || 

rule[A2(*): 

[+e:bsm_eventˆA12] 

[?|e.header_event_type == ’AUE_login || 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  50 

e.header_event_type == ’AUE_telnet || 

e.header_event_type == ’AUE_rlogin || 

e.header_event_type == ’AUE_rshd || 

e.header_event_type == ’AUE_su] 

[?|e.return_return_value == ’INVALID_USER] 

[+cc: current_bl_cntr] 

[-max_bl_reached] 

==> 

[+bad_login | 

timestamp = e.header_time, 

audit_seq_no = e.msequenceNumber, 

username = "invalid username", 

command = e.header_command, 

etype = e.header_event_type, 

hostname = e.subject_hostname, 

portID = e.subject_port_id, 

processID = e.subject_pid, 

textList = e.textList] 

[/cc| value += 1] 

[$|e:A12] 

] 

 

e.header_event_type == ’AUE_telnet || 

e.header_event_type == ’AUE_rlogin || 

e.header_event_type == ’AUE_rshd || 

e.header_event_type == ’AUE_su] 

[?|e.return_return_value == 

’INVALID_PWD] 

[+cc: current_bl_cntr] 

[-max_bl_reached] 

==> 

[+bad_login | 

timestamp = e.header_time, 

audit_seq_no = e.msequenceNumber, 

username = e.subject_runame, 

command = e.header_command, 

etype = e.header_event_type, 

hostname = e.subject_hostname, 

portID = e.subject_port_id, 

processID = e.subject_pid, 

textList = e.textList] 

[/cc| value += 1] 

[$|e:A12] 

] 

rule[A3(*): 

[-max_bl_reached] 

[+cc:current_bl_cntr | value == ’x] 

[+ts:timeˆA3] 

==> 

[!|printf("ALERT: Max Bad Logins \n")] 

[+max_bl_reached | value = 1] 

[$|ts:A3] 

[!|EXpertReport("Maha Intrusion Detection 

System", 1042, "description", ’pTypeString, 

"MAX LOGIN ALERT", 

"ruleName", ’pTypeString, "A3", "")] 

] 

rule[A4(*): 

[+max_bl_reached] 

[+bc:bad_login] 

[+cc:current_bl_cntr] 

==> 

[!|printf("(%s): %s from %s on %s port 

%d, \ 

PID = %d, time = %d, seq no = %d \n", 

bc.textlist, bc.command, bc.username, 

bc.hostname, bc.portID, bc.processID, 

bc.timestamp, bc.audit_seq_no)] 

[/cc|value -= 1] 

[-|bc] 

rule[A5(*): 

[+mx:max_bl_reached] 

[-bad_login] 

==> 

[-|mx] 

] 

 

rule[A6(*): 

[+ts:timeˆA6] 

[-max_bl_reached] 

[+bc:bad_login] 

[+cc:current_bl_cntr] 

[?|(ts.sec - bc.timestamp) > ’y] 

==> 

[/cc|value -=1 ] 

[-|bc] 

[$|ts:A6]] 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  55 

4.2  Event Stream Format for SYN Flood Attack :  
The SYN flood attack is a denial-of-service attack that prevents the target 

machine from accepting new connections to a given IP port [1]. 

The requirements for detecting the occurrence of a SYN flooding attack 

against a host are rather minimal. From the perspective of TCP/IP traffic 

monitoring, the analysis engine need only monitor SYNACK and ACK packet 

exchanges to identify incomplete TCP/IP handshakes.  

In this example, the traffic monitor is placed on a segment of the network 

capable of observing traffic to and from the analysis target (the host being 

monitored). All SYN-ACK packets sent from—and ACK packets sent to—the 

analysis target are recorded, and the following event record is derived [6]: 

       Connection Event Format: <Event Type> <Timestamp> <Seq ID> <Client 

ID> 

        The Event Type field is simply a binary flag, which indicates whether the 

packet has its SYN and ACK flags enabled (which we can denote with 0), or 

only the ACK flag enabled (denoted by 1). The timestamp is a numeric encoding 

of the time at which the packet is observed from the monitor. The sequence ID 

represents the TCP Sequence ID field, which is used to associate client requests 

with server replies. Last, the Client ID can be used to identify the client who 

initiated the connection.  

  4.2.1  Rule-Based Fact Type Definitions 
 Table(2) illustrates the rule-based definitions of three example facts that 

are specified for use in performing the TCP SYN flooding analysis. The first 

rule-based, conn event, is used to assert the connection event .A connection 

events are captured by the network monitor, their fields can be mapped (one to 

one) to the fields of the conn event type, and the conn event type is then asserted 

into the factbase of the SYN flood intrusion detection system.  

The open conn type is used to construct facts regarding half-open 

connections that are pending completion of the TCP/IP handshake. Note, 

although we use the shorthand name open conn, the fact actually represents the 

assertion that a TCP half-opened connection has been observed. The fields of 

the open conn contain the TCP sequence ID of the pending connection, a client 

ID string, the timestamp as copied from the connection event, and an expired 

flag used for rules collection by the production rules. Last, the bad connection 

fact, bad conn, maintains a running count of the number of bad connection 

requests detected through the observations of SYN-ACK and ACK packages 

between the analysis target and external clients. 

4.2  The Rules For SYN Flood Detection. 
The following illustrates one inference strategy that rule-based intrusion 

detection system can employ for deducing a TCP SYN flooding attack, using the 

fact definitions defined above. In addition, a few constants are referenced from 

the rule set, and are defined as follows [7]: 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  55 

a. max bad conns: Number of bad connections tolerated before SYN flood alert. 

b. expire time: Amount of time to wait on ACK before a connection is declared 

a bad connection. 

c. bad conn life: Number of seconds that a bad connection fact will live before 

being released. The rules attempt to identify half-open TCP connections that 

expire beyond a user-defined waiting period. As we assert half-open 

connection facts into the factbase, we must include logic to recognize both 

when the connections are successfully completed and when half-open 

connection expire beyond the user-defined waiting period, from which we 

deduce the occurrence of a bad connection.  

SYN flood attacks will result in excessive bursts of bad connections, which 

we monitor with rules that maintain a running count of bad connections over a 

sliding window of time. When the number of bad connections exceeds the 

maximum number for bad connections within the sliding time window, we 

raise an alert to denote the burst of no completed connection requests. The 

following is the rule set shown in Table(3). 

d. create open conn: determines whether the event connection represents a SYN-

ACK packet (from the monitor target), which records the TCP sequence 

number, the timestamp at which this half-opened connection was first 

observed, an expired flag to indicate when the half-open connection exceeds 

a time threshold, and the client ID. 

e. destroy open conn: removes an open connection fact when the corresponding 

ACK packet is received from the client. 

f. ignore spurious acks: removes events involving ACK packets that are not 

associated with a specific SYN-ACK pending connection. In practice, such 

packets are normal. 

g. first bad conn: This and the following rule manage a running count of the set 

of bad connections observed by the inference engine. They are driven by 

time facts which are used to monitor whether there exists a half-open 

connection that has exceeded the expire time limit.  

h. add to bad cons: is applied while the total number of bad conn facts is less 

than the maximum tolerated.  

i. max open cons: is applied when the maximum number of bad conn facts is 

encountered during a burst of bad conn life time units.  

j. free bad open cons: limits the amount of time that a bad open connection is 

counted against the system.  

Table(2). Facts for TCP SYN flood detection. 

type[conn_event  type[open_conn  type[bad_conn  

e_type:integer, expired: integer,  count:integer]  

sec:integer,           sec:integer,   

seq_id:integer, seq_id:integer,   

client_ID:string] client_ID:string]   



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  53 

Finally we must noted that, the final inference decision is attack type with 

attack ratio for increasing the correctness and the efficiency of the proposed 

system. 

Table (3) Rule Set for Detection of TCP SYN Flood Attacks. 
rule[create_open_conn(*):  rule[add_to_bad_cons(*):  

[+ev:conn_event|e_type == 0]  [+ts:time]  

==>  [+oc:open_conn|expired == 0]  

[+open_conn |seq_id = ev.seq_id,  [?|(ts.sec -oc.sec) > ’expire_time]  

sec = ev.sec, expired = 0, [+bc:bad_conn|count < ’max_bad_conns]  

client_ID = ev.client_ID]  ==> [/bc|count += 1]      

[-|ev]  [/oc|expired = 1]  

]  ]  

rule[destroy_open_conn(*):  rule[max_open_cons(*):  

[+ev:conn_event|e_type == 1]  [+ts:time]  

[+oc:open_conn|seq_id == (ev.seq_id -1)]  [+oc:open_conn|expired == 0]  

==>  [?|(ts.sec -oc.sec) > ’expire_time]  

[-|oc]  [+bc:bad_conn|count == ’max_bad_conns]  

[-|ev]  ==>  

]  [!|syn_alert("SYN Attack: Last Host %s.\  

rule[ignore_spurious_acks(*):  SeqID = %d. Time = %d",  

[+ev:conn_event|e_type == 1]  oc.client_ID, oc.seq_id, oc.sec)]  

[-oc:open_conn|seq_id == (ev.seq_id -1)]  [/bc|count = 1]  

==>  [/oc|expired = 1]  

[-|ev]   ] ]  

rule[first_bad_conn(*):  rule[free_bad_open_cons(*):  

[+ts:time]  [+ts:time]  

[-bad_conn]  [+bc:bad_conn]  

[+oc:open_conn|expired == 0]  [+oc:open_conn|expired == 1]  

[?|(ts.sec -oc.sec) > ’expire_time]  [?|(ts.sec -oc.sec) > ’bad_conn_life]  

==>  ==>  

[+bad_conn|count = 1]  [-|oc]  

[/oc| expired = 1]    ] [/bc|count -= 1]   ] 

5.   Decision Engine: 
There are two significant features, session permission, and inference 

decision. These two values could not be exactly specified with any well–form 

formula. for example, if the inference result is 60% SNY Flooding attack, while 

the session analysis result is allow copy session. These results lead to conflict in 

the final decision. The decision rule-based system starts with the threshold 

values. We assign membership values to inference result.. Membership function 

defines values into 3 levels, namely, low (L), medium (M), and high (H) as 

shown in Table (4). 

Additionally, the variable R is the result of detection (ratio of attacking and the 

name of attack) . We create a set of rules in an IF-THEN form. These rules are 

derived from our experiments in detection of TCP/IP attacks and the surveying 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  55 

of many hacking reports. The rules are described as follows( where IFR 

inference result, and  SA =session result with (A = allow, NA=Not allow)). 

Rule1: IF IFR =L AND SA=  A THEN R=L 

Rule2: IF IFR =L AND SA =NA THEN R=M 

Rule3: IF IFR =M AND SA =A THEN R=M 

Rule4: IF IFR =M AND SA =NA THEN R=H 

Rule5: IF IFR =H AND SA =A THEN R=H 

Rule6: IF IFR =H AND SA =NA THEN R=H 

Low  Medium  High  Value  

0.3  0.6 0.9 IFR  

     

            Table (4) The result of testing experiment. 

 

After give the final decision, the administration will take his policies for prevent 

the attacker, while the proposed system will call the filter packet to stopping the 

attacker if the attacking ratio is high. Table (5) Shows the detection result of the 

proposed system of some attack types(each attack with attack ratio). 

Attack 

type 

Number Misses Score 

Smurf 8 0 100% 

Teardrop 4 0 100% 

Land 2 0 100% 

Ping of 

Death 

5 0 99% 

IP Sweep 3 0 96% 

Satan 2 0 94% 

Port Sweep 3 0 96% 

Saint 2 0 89% 

nmap 4 0 78% 

Neptune 7 0 70% 

mscan 1 0 55% 

Total 43 0 88% 

 
 
6. Discussion 

From the time complexity comparison between the proposed system and the 

Neural Network Intrusion Detection System (NNIDS) [7] ,the results are as 

shown in Table (6). 

 
Attack Name�Detection Time of the proposed system (sec)�Detection  Time of the Neural Network system (sec)�Decision of  the Proposed 

system 

Detectio

n  Time 

Decisio

n of  the 

Decisio

n of the 

Actual 

Decision 
�TCP SYN 

Flood 

Table (5) The Proposed System Output Ratio of  some  attack 

 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  55 

Detection Time of the proposed system (sec) of the 

Neural 

Network 

system 

(sec) 

Propose

d system 

propose

d 

system 

TCP SYN Flood 

Smurf 3 8 Attack Attac

k 

Attack 

TearDrop 5 20 Attack Attac

k 

Attack 

Land 10 30 Attack No 

Attac

k 

Attack 

Ping of Death 2 13 Attack Attac

k 

Attack 

IP Sweep 12 30 Attack Non 

Attac

k 

Attack 

Saint 6 30 Attack Attac

k 

Attack 

Nmap 10 16 Attack Non 

Attac

k 

Attack 

Nepune 13 23 Attack Non 

Attac

k 

Attack 

Mscan 5 21 Attack Non 

Attac

k 

Attack 

 

        Table (6) Comparison between the proposed system and the NNIDS to 

determine the detect 

Note that the average of packet size (form 64 to 440 byte), each session (four 

connections are opened ),the server can receive two packets at any one time 

,each one is of (size 64 byte/sec).The Table (6) reveals ,that the detection time 

obtained based on the proposed system is better compared with the NNIDS [7]. 

Thus ,suggesting that the proposed system is less complex than NNIDS [7] . 

 

7.   Conclusions 
The following points are concluded from the proposed system. 

1. The system provides a sound basis for developing powerful real-time 

intrusion detection capable of detecting a wide range of intrusion related 

to attempted break-ins, masquerading (successful break-ins), system 

penetration and other abuses by legitimate users. 

2. The system able to detect various TCP attacks with a better time and 

correct reaction. 

3. The modular characteristics of the architecture allow it to be easily 

extended, configured and modified, either by adding new components, or 

by replacing components when they need to be updated. 



Secure Connection for Private Local Area Network ………………………. 
Anoar Abbas htaab 

 

0202/ والستون سسادال العدد                                               الأساسية التربية كلية مجلة  55 

4. The packet filtering technique is a useful technique to stopping the intruder 

work but this technique will not effect when the intruder is an authorized 

user with a high permissions. 

 

5. The ability of the changing or modify the controlling rules with the update 

of the intrusion technique increase the efficiency of the proposed system 

to detect and treatments the newer types of attacking techniques.  

6. Finally, the watermark technique help administrator to detect the intruder 

in very short time. 

 

8.  Future works: 
 The following are some suggestion for future works: 

1. Using the encryption methods to encrypt the packet content before sends 

form client to server. 

2. Improve the authentication by using the secure authentication techniques. 

3. Improve proposed system by using the cover channel to transfer the secret 

message through the network. 

 

References: 
[1]  Escamilla T.  “Intrusion detection: Network security beyond the Firewall", 

John Wiley and Sons, Inc., 1998.    

 [2]   Mahdi S. "Statistical approaches for Intrusion Detection System” MSc. 

Thesis, Department of Computer Science and Information Systems of the 

University of Technology.2000 

[3]     P.E Procter “ The Practical Intrusion Detection Handbook” Prentice-Hall, 

Inc, 2001. 

[4]   S. Kumar   “Classification & Detection of Computer Intrusions “ Ph.D. 

Thesis, Purdue University, August 1995.  

[5]  R .F . Erbachar & B. Augustan “Intrusion Detection Data: Collection and 

Analysis" Dep. of Computer Science, University at Albania-sunny, 2000. 

 [6]   Khazal  H.      "A simulated IDS Using Packet Capture", Ph.D. Thesis, 

Computer Science Dep. of the University of Technology, Baghdad, 2004 

[4]  Helmer .G, Wang J., Vasant and Lesmiller " Intelligent Agents for 

Intrusion Detection" 

[7] “Network-based ID Model for Detecting TCP SYN Flooding “ Dep. of 

Computer Engineering , Kasetsart University Bangkok. 2002 

 


