Some Types of (1,2)*- M -πgb Closed Mappings

Dunya Mohamed Hammed

Messa zaki salmaan

Department of Mathematics, College of Education Al-Mustansiriyah University

Abstract:

In this paper, we introduce and study new types of $(1,2)^*$ - M - π gb closed mappings which are $((1,2)^*$ - M*- π gb closed mapping and $(1,2)^*$ - M**- π gb closed mapping) in bitopological spaces. Also some characterizations and basic properties will be study.

Keywords:

bitopological spaces , Closed mappings, M-(1,2)*- π gb closed mapping.

1- Introduction:

Ravi and LellisThivagar [4] have introduced the concepts of $\tau_1\tau_2$ closed sets, $(1,2)^*$ -semi-open sets, $(1,2)^*$ -regular open sets and $(1,2)^*$ generalized closed sets in bitopological spaces. Further, LellisTivagar and Ravi [3] unleashed the study of $(1,2)^*$ -g-closed maps. While the concepts $((1,2)^*-\pi gb$ -closed sets, $(1,2)^*-\pi gb$ -open sets, $(1,2)^*-\pi gb$ -continuous maps, $(1,2)^*-\pi gb$ -irresoultes maps, $(1,2)^*-\pi gb$ -closed maps and $(1,2)^*-\pi gb$ -Mclosed maps) were discussed and introduced by (Sreeja and Janaki, 2012, in [9], [10]).

In this work, we introduce a new type of $(1,2)^*$ -M- π gb-closed mapping which are $((1,2)^*$ -M*-closed and $(1,2)^*$ -M**-closed)) maps in bitopological spaces and study their basic properties. We also investigate its relationship with other types of $(1,2)^*$ -closed maps.

Throughout this paper, X, Y and Z are spaces, and $((X, \tau_1, \tau_2), (Y, \sigma_1, \sigma_2))$ and (Z, μ_1, μ_2) are denote bitopological spaces respectively.

2-<u>Preliminaries</u>:

In this section, we recall some definitions and results which are used in this paper.

Definition (2.1), [4]:- A triplet (X, τ_1, τ_2) , where X is a nonempty set and τ_1 and τ_2 are topologies on X is called bitopological space.

Definition (2.2), [4]:- A subset S of bitopological space (X, τ_1, τ_2) , is said to be $\tau_1\tau_2$ - open if S = A \cup B, where A $\in \tau_1$ and B $\in \tau_2$. The complement of $\tau_1\tau_2$ - open set is called $\tau_1\tau_2$ - closed .The family of all $\tau_1\tau_2$ - open (resp. $\tau_1\tau_2$ -closed) sets of (X, τ_1, τ_2) , is denoted by $(1,2)^*$ -o(X) (resp. $(1,2)^*$ -c(X)).

المجلد 22- العدد 95- 2016

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

Example (2.1): Let X = {a,b,c}, τ_1 = {X, ϕ ,{a}} and τ_2 = { X, ϕ ,{b}}. Then the sets in { X, ϕ ,{a},{b},{a,b}} are called $\tau_1\tau_2$ - open and the sets in {X, ϕ ,{c},{a,c},{b,c}} are called $\tau_1\tau_2$ -closed.

Remark (2.3), [4]: $\tau_1 \tau_2$ -open subsets of (X, τ_1 , τ_2), need not necessarily form a topology.

Definition (2.4), [4]:- Let S be a subset of a bitopological space (X, τ_1, τ_2) , Then:

(i) $\tau_1 \tau_2$ - closure of S denoted by $\tau_1 \tau_2$ -cl(S) is defined by $\cap \{F:S \subseteq F \text{ and } F \text{ is } \tau_1 \tau_2 \text{ -closed}\}$

(ii) $\tau_1 \tau_2$ - interior of S denoted by $\cup \{U: U \subseteq S \text{ and } U \text{ is } \tau_1 \tau_2 \text{ -open} \}$.

Definition (2.5): A subset S of (X, τ_1, τ_2) , is said to be a:

- (i) (1,2)*-semi-open [4] if $S \subset \tau_1 \tau_2$ -cl ($\tau_1 \tau_2$ int(S)).
- (ii) (1,2)*-regular open [4] if $S = \tau_1 \tau_2$ -int($\tau_1 \tau_2$ -cl(S)).
- (iii) $(1,2)^*$ - π -open [6] if S is the finite union of $(1,2)^*$ -regular open sets.
- (iv) (1,2)*-b-open [1] if $S \subset \tau_1 \tau_2$ -cl $(\tau_1 \tau_2 int(S)) \cup \tau_1 \tau_2$ -int $(\tau_1 \tau_2 cl(S))$.

The complements of all the above mentioned open sets are called their respective closed sets and we denoted the family of all $(1,2)^*$ -regular open (resp. $(1,2)^*$ -regular closed sets) by $(1,2)^*$ -RO (resp. $(1,2)^*$ RC).

The $(1,2)^*$ -b-closure of a subset S of (X, τ_1, τ_2) , is denoted by $(1,2)^*$ -bcl(S) and defined as the intersection of all $(1,2)^*$ -b-closed sets containing S.

Definition (2.6):- A subset A of bitopological space (X, τ_1, τ_2) , is said to be a :

- (i) (1,2)*-generalized closed set [4] (briefly, (1,2)*-g-closed set) if $\tau_1 \tau_2$ cl(A) \subset U whenever A \subset U and U $\in (1,2)$ *-open set in (X, τ_1, τ_2).
- (ii) (1,2)*-semi-generalized-star-closed set [7] (briefly, (1,2)*-sg*-closed set) if τ₁τ₂-cl(A) ⊂ U whenever A ⊂ U and U is (1,2)*- semi open set in (X, τ₁, τ₂).
- (iii) (1,2)*- π -generalized b-closed set [9] (briefly, (1,2)*- π gb-closed set) if $\tau_1\tau_2$ -bcl(A) \subset U whenever A \subset U and U is $\tau_1\tau_2$ - π -open set in (X, τ_1, τ_2).

The family of all $(1,2)^*$ -g-closed sets (resp. $(1,2)^*$ -sg*-closed and $(1,2)^*$ - π gb-closed) of (X,τ_1,τ_2) will be denoted by $(1,2)^*$ -GC(X) (resp. $(1,2)^*$ -SG*C(X) and $(1,2)^*$ - π GBC(X))

Remark (2.7): In [7], [9] it is proved that in any bitopological spaces (X, τ_1, τ_2) :

(1) Every $\tau_1\tau_2$ -closed set (resp. (1,2)*-g-closed set) is (1,2)*- π gb-closed set in (X, τ_1, τ_2).

المجلد 22- العدد 95- 2016

- 38 -

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

(2) Every $\tau_1 \tau_2$ -closed set (resp. (1,2)*-sg*-closed set) is (1,2)*-g-closed set in (X, τ_1 , τ_2) is (1,2)*- π gb-closed set in (X, τ_1 , τ_2).

The converse of the above Remark need not be true, as shown in the following example:

Examples (2.2):-

- (i) Let X={a,b,c}, τ_1 ={X, ϕ ,{a}} and τ_2 ={X, ϕ ,{b},{a,b}}. Then (1,2)*o(X) = {X, ϕ ,{a},{b},{a,b}}, (1,2)*c(X) ={X, ϕ ,{c},{a,c},{b,c}} = (1,2)*-GC(X) and (1,2)*- π GBC(X) = {X, ϕ ,{a},{b},{c},{a,c},{b,c}}. Then, clearly the set A = {a} in (X, τ_1 , τ_2), is (1,2)*- π gb-closed sets, but is not $\tau_1\tau_2$ -closed sets and (1,2)*-g-closed in (X, τ_1 , τ_2).
- (ii) Let X={a,b,c}, τ_1 ={X, ϕ } and τ_2 ={X, ϕ ,{a}}. Then (1,2)*-O(X) = {X, ϕ ,{a}}, (1,2)*-C(X)={X, ϕ ,{b,c}}, (1,2)*-SG*C(X))={X, ϕ ,{b,c}} and GC(X)={X, ϕ ,{b},{c},{a,b},{a,c},{b,c}}. Then clearly the set A = {b} is (1,2)*-g-closed sets in (X, τ_1 , τ_2),but is not $\tau_1\tau_2$ -closed set and (1,2)*-sg*-closed set in (X, τ_1 , τ_2).

Definition (2.8): A map $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be:

- (1) (1,2)*-closed or $\tau_1\tau_2$ -closed [8] if f(A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) for every $\tau_1\tau_2$ -closed set A in (X, τ_1, τ_2) .
- (2) (1,2)*-g-closed [3] if f(A) is (1,2)*-g-closed set in (Y,σ_1,σ_2) for every $\tau_1\tau_2$ -closed set A in (X, τ_1, τ_2) .
- (3) (1,2)*-sg*-closed [7] if f(A) is $(1,2)^*$ -sg*-closed set in (Y,σ_1,σ_2) for every $\tau_1\tau_2$ -closed set A in (X, τ_1, τ_2) .
- (4) **Pre-(1,2)*-sg*-closed** [7] if f(A) is (1,2)*-sg*-closed set in (Y,σ_1,σ_2) for every (1,2)*-sg*-closed set A in (X, τ_1, τ_2) .
- (5) (1,2)*- π gb-closed [10] if f(A) is (1,2)*- π gb-closed set in (Y,σ_1,σ_2) for every $\tau_1\tau_2$ -closed set A in (X, τ_1, τ_2) .
- (6) **M-(1,2)*-\pigb-closed** [10] if f(A) is $(1,2)*-\pi$ gb-closed set in (Y,σ_1,σ_2) for every $(1,2)*-\pi$ gb-closed set A in (X, τ_1, τ_2) .

Definition (2.9): A map $f: ((X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be a :

- (1) (1,2)*-continuous [5] if $f^{-1}(A)$ is $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) for every $\sigma_1\sigma_2$ -closed set A in (Y, σ_1, σ_2) .
- (2) (1,2)*-g-continuous [3] if $f^{-1}(A)$ is (1,2)*-g-closed set in (X, τ_1, τ_2) for every $\tau_1 \tau_2$ -closed set in (Y, σ_1, σ_2) .
- (3) (1,2)*- π gb-continuous [9] if $f^{-1}(A)$ is $(1,2)^*-\pi$ gb-closed set in (X, τ_1, τ_2) for every $\tau_1 \tau_2$ -closed set in (Y, σ_1, σ_2) .
- (4) (1,2)*- π gb-irresolute [9] if $f^{-1}(A)$ is $(1,2)^*-\pi$ gb-closed set in (X, τ_1, τ_2) for every $(1,2)^*-\pi$ gb-closed set in (Y,σ_1,σ_2) .

Definition (2.10): A bitopological space (X, τ_1, τ_2) is called a :

(1) (1,2)*-**T**_{1/2}-space [2] if every (1,2)*-g-closed set is $\tau_1 \tau_2$ -closed.

- 39 - المباد 22- العدد 39 -

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

- (2) (1,2)*- π gb-space [9] if every (1,2)*- π gb-closed set is $\tau_1 \tau_2$ -closed.
- (3) **RM-space** [7] if every subset in (X, τ_1, τ_2) is either $\tau_1 \tau_2$ -open or $\tau_1 \tau_2$ -closed.

Theorem (2.11), [7]:- In RM-space (X, τ_1, τ_2) every $(1,2)^*$ -sg*-closed set is $\tau_1 \tau_2$ -closed.

Theorem (2.12), [9]:- Let $B \subseteq A \subseteq X$ where A is $(1,2)^*$ - π gb-closed and $\tau_1\tau_2$ - π -open set. Then B is $(1,2)^*$ - π gb-closed in X.

3- <u>Some Types of (1,2)*-M-πgb-closed Maps</u>:

We now introduce the following a new definition of $(1,2)^*$ -M- π gb-closed mapping.

Definition (3.1): A map $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(1,2)^*$ -**M*-\pigb-closed** if

f(A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) for every $(1,2)^*$ - π gb-closed set A in (X, τ_1, τ_2) .

Example(3.1):- Let X=Y={a,b,c}, τ_1 ={X, ϕ ,{a}} and τ_2 ={X, ϕ ,{b},{a,b}}, σ_1 ={Y, ϕ ,{a},{a,c}}, σ_2 ={Y, ϕ ,{a,b}}. Then the sets {X, ϕ ,{a},{b},{a,b}} are $\tau_1\tau_2$ -open in (X, τ_1 , τ_2), the sets {X, ϕ ,{c},{a,c},{b,c}} are $\tau_1\tau_2$ -closed in (X, τ_1 , τ_2) and GBC(X, τ_1 , τ_2) = {X, ϕ ,{a},{b},{c},{a,c},{b,c}}, the sets {Y, ϕ ,{a},{a,c}, {a,b}} are $\sigma_1\sigma_2$ -open in (Y, σ_1 , σ_2) and the sets {Y, ϕ ,{c},{b},{b,c}} are $\sigma_1\sigma_2$ -closed in (Y, σ_1 , σ_2). Define *f*: (X, τ_1 , τ_2)

 \longrightarrow (Y, σ_1 , σ_2) by f(a) = f(b) = b and f(c) = c. Then clearly f is (1,2)*-M*- π gb-closed map.

Proposition (3.2): If $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -M*- π gb-closed map. Then f is a:

- (i) $(1,2)^*$ -closed map.
- (ii) $(1,2)^*$ -g-closed map.

(iii)(1,2)*-sg*-closed map.

 $(iv)(1,2)^*$ - π gb-closed map.

(v) $(1,2)^*$ -M- π gb-closed map.

(vi)Pre (1,2)*-sg*-closed map.

Proof:

- (i) Let A be a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) . By Remark (2.7) Part (1) (every $\tau_1\tau_2$ -closed set is $(1,2)^*$ - π gb-closed). Then A is $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) . Since f is $(1,2)^*$ - M^* - π gb-closed map. Thus f (A) is $\sigma_1\sigma_2$ -closed set in (Y, σ_1, σ_2) . Hence, f is $(1,2)^*$ -closed map.
- (ii) Let A be a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) . By Remark (2.7) Part (1) we get A is $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) . Since f is $(1,2)^*$ - M^* - π gb-closed map. Thus f (A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Also, since

المبلد 22- العدد 95- 2016

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

(every $\sigma_1 \sigma_2$ -closed set is (1,2)*-g-closed, [4]). Therefore f(A) is (1,2)*g-closed set in (Y, σ_1, σ_2) . Hence, f is (1,2)*-g-closed map.

- (iii) Let A be a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) .By Remark (2.7) we get A is $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) .Since f is $(1,2)^*$ - M^* - π gb-closed map. Thus f (A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Also, since (every $\sigma_1\sigma_2$ -closed set is $(1,2)^*$ -g-closed, [4] and every $(1,2)^*$ -g-closed set is $(1,2)^*$ -sg*-closed set, [7]). Therefore, f (A) is $(1,2)^*$ -sg*-closed set in (Y,σ_1,σ_2) . Hence, f is $(1,2)^*$ -sg*-closed map.
- (iv)Let A be a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) .Since (every $\tau_1\tau_2$ -closed set is $(1,2)^*$ - π gb-closed). Then A is $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) . Thus, f (A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) .Also, by using Remark (2.7) Part (1) we get f (A) is $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) . Therefore, f is $(1,2)^*$ - π gb-closed map.

The proof of Parts (v) and (vi) are similar to above.

Remark (3.3): The converse of Proposition (3.2) may not be true in general. Consider the following example:

Example (3.2):-

Let X=Y={a,b,c}, τ_1 ={X, ϕ } and τ_2 ={X, ϕ ,{a}}, σ_1 ={Y, ϕ ,{a}}, σ_2 ={Y, ϕ , {b},{a,b}}. Then the sets {X, ϕ ,{a}} are $\tau_1\tau_2$ -open sets in (X, τ_1 , τ_2), the sets {X, ϕ ,{b,c}} are $\tau_1\tau_2$ -closed sets in (X, τ_1 , τ_2), π GBC(X, τ_1 , τ_2)={X, ϕ ,{a},{b},{c},{a,b},{a,c},{b,c}}, the sets {Y, ϕ ,{a},{b},{a,b}} are $\sigma_1\sigma_2$ -open set in (Y, σ_1 , σ_2) and the sets {Y, ϕ ,{c},{a,c},{b,c}} are $\sigma_1\sigma_2$ -closed set in (Y, σ_1 , σ_2). Define *f* :(X, τ_1 , τ_2) \longrightarrow (Y, σ_1 , σ_2) by *f* (a) = b, *f* (b) = a and *f* (c) = c. Then, *f* is (1,2)*-closed map, but *f* is not (1,2)*-M*- π gb-closed map. Since for (1,2)*- π gb-closed set in (Y, σ_1 , σ_2).

Example(3.3):-Let X={a,b,c}, τ_1 ={X, ϕ ,{a}} and τ_2 ={X, ϕ ,{b},{a,b}}. Then the sets in {X, ϕ ,{a},{b},{a,b}} are $\tau_1\tau_2$ -open sets (X, τ_1 , τ_2), the sets {X, ϕ ,{c},{a,c},{b,c}} are $\tau_1\tau_2$ -closed sets (X, τ_1 , τ_2) and (1,2)*-GC(X, τ_1 , τ_2) (1,2)SG*C((X, τ_1 , τ_2))={X, ϕ ,{c},{a,c},{b,c}}. The identity map, *f*: (X, τ_1 , τ_2) \longrightarrow (X, τ_1 , τ_2) is (1,2)*-g-closed, (1,2)*-sg*-closed and pre(1,2)*-sg*-closed) map but *f* is not (1,2)*-M*- π gb-closed map. Since for (1,2)*- π gb-closed set A = {a} in (X, τ_1 , τ_2), *f* (A) = *f* ({a}) = {A} is not $\tau_1\tau_2$ -closed set in (X, τ_1 , τ_2).

Example (3.4):-

Let X={a,b,c}, τ_1 ={X, ϕ } and τ_2 ={X, ϕ ,{a}}. Then the sets {X, ϕ ,{a}} are $\tau_1\tau_2$ -open sets in (X, τ_1 , τ_2), the sets {X, ϕ ,{b,c}} are $\tau_1\tau_2$ -closed sets

المبلد 22- العدد 95- 2016

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

in (X, τ_1, τ_2) and $\pi GBC(X, \tau_1, \tau_2) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}$. Define $f: (X, \tau_1, \tau_2) \longrightarrow (X, \tau_1, \tau_2)$ by f(a) = c, f(b) = a and f(c) = b. Then clearly f is $(1,2)^*$ - π gb-closed map and $(1,2)^*$ -M- π gb-closed map, but f is not $(1,2)^*$ - M^* - π gb-closed. Since for a $\tau_1\tau_2$ -closed set $A = \{a\}$ in $(X, \tau_1, \tau_2), f(A) = f(\{a\}) = \{c\}$ is not $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) .

The following Propositions give the condition to make the Proposition (3.2) true.

Proposition (3.4): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ be any map and X, Y be two $(1,2)^*$ - π gb-space. Then f is $(1,2)^*$ - M^* - π gb-closed map, if f is a:

- (i) $(1,2)^*$ -closed map.
- (ii) $(1,2)^*$ - π gb-closed map.

(iii) $(1,2)^*$ -M- π gb-closed map.

Proof:

- (i) Let A be a π gb-closed set in (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is a $(1,2)^*$ - π gb-space and by using Definition (2.10) Part (ii) we get, A is a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) . Also, since f is a $(1,2)^*$ -closed map. Thus f (A) is a $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Hence f is $(1,2)^*$ -M*- π gb-closed map.
- (ii) Let A be a π gb-closed set in (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is a $(1,2)^*$ - π gb-space and by Definition (2.10) we have A is a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) . By hypothesis f is $(1,2)^*$ - π gb-closed map. Thus f (A) is a $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) . Also, since Y is a $(1,2)^*$ - π gb-space and by Definition (2.10) Part (ii) we obtain f (A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Therefore f is $(1,2)^*$ - π gb-closed map.

The proof of Part (iii) is similar to Parts (i) and (ii).

Proposition (3.5):

Let X be a $(1,2)^*$ - π gb-space and Y be a $(1,2)^*$ - $T_{1/2}$ -space. If $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -g-closed map. Then f is $(1,2)^*$ - M^* - π gb-map.

Proof:- Let A be a $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) . Since X is $(1,2)^*$ - π gb-space and by Definition (2.10) Part (ii) we get, A is a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) . Also, since *f* is a $(1,2)^*$ -g-closed map. Thus, *f* (A) is a $(1,2)^*$ -g-closed set in (Y,σ_1,σ_2) . By hypothesis Y is a $(1,2)^*$ - $T_{1/2}$ -space and by Definition (2.10) Part (i) we have *f* (A) is a $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Hence , *f* is a $(1,2)^*$ - π gb-closed map.

Proposition (3.6): Let X be a $(1,2)^*$ - π gb-space and Y be a RM-space. Then a map $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is $a(1,2)^*$ - M^* - π gb- closed. If f is a: (i) $(1,2)^*$ -sg*-closed map.

(ii) Pre (1,2)*-sg*-closed map.

Proof:

(i) Let A be a $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) . Since X is $(1,2)^*$ - π gbspace. Then A is a $\tau_1 \tau_2$ -closed set in (X, τ_1, τ_2) . Also, since f is a $(1,2)^*$ -sg*-closed map. Thus f (A) is a $(1,2)^*$ -sg*-closed set in (Y,σ_1,σ_2) .By hypothesis Y is a RM-space and by Definition (2.10) Part (iii) we get f (A) is a $\sigma_1 \sigma_2$ -closed set in (Y, σ_1, σ_2) . Therefore, f is a $(1,2)^*$ -M*- π gb-closed map.

The proof of Part (ii) is similar to Part (i).

Proposition (3.7):- If f: $(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -M*- π gbclosed map and A is $(1,2)^*$ - π gb-closed and $\tau_1\tau_2$ - π -open set in (X, τ_1, τ_2) . Then $f|_{A}:(A, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*-M^*-\pi gb$ -closed map.

Proof:

Let B be a $(1,2)^*$ - π gb-closed subset of A. Then by Theorem (2.12) we get B is a $(1,2)^*$ - π gb-closed in (X,τ_1,τ_2) . Since f is a $(1,2)^*$ - M^* - π gb-closed map. Thus f (B) is a $\sigma_1 \sigma_2$ -closed set in (Y, σ_1, σ_2) . But f (B) = $(f|_A)(B)$. Therefore $(f|_A)(B)$ is a $\tau_1\tau_2$ -closed set in (Y,σ_1,σ_2) . Hence, $f|_A$ is a $(1,2)^*$ -M*- π gb-closed map.

Corollary (3.8):- If $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -M*- π gb-closed map and A is $(1,2)^*$ - π gb-closed and $\tau_1\tau_2$ -open set in (X,τ_1,τ_2) . Then $f|_{A}:(A,\tau_{1},\tau_{2})\longrightarrow (Y,\sigma_{1},\sigma_{2})$ is a:

(i) $(1,2)^*$ -closed map

- (ii) $(1,2)^*$ - π gb-closed map.
- (iii) $(1,2)^*$ -M- π gb-closed map.

Proof:

- This follows from Propositions (3.7) and (3.2) Part (i). **(i)**
- This follows from Propositions (3.7) and (3.2) Part (ii). (ii)
- (iii) This follows from Propositions (3.7) and (3.2) Part (iii).

Proposition (3.9): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \longrightarrow$

 (Z,μ_1,μ_2) be any two maps. Then $g \circ f : (X, \tau_1, \tau_2) \longrightarrow (Z,\mu_1,\mu_2)$ is $(1,2)^*$ - $M^*-\pi gb$ -closed map if :

(i) f and g are two $(1,2)^*$ -M*- π gb-closed maps.

(ii) f is a $(1,2)^*$ -M*- π gb-closed map and g is a $(1,2)^*$ -closed.

(iii) f is $(1,2)^*$ -M- π gb-closed map and g is $(1,2)^*$ -M**- π gb-closed.

Proof:

(i) Let A be a $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) . Since f is a $(1,2)^*$ -M*- π gb-closed map. Thus, f (A) is $\tau_1\tau_2$ -closed set in (Y,σ_1,σ_2) . By Remark (2.7) Part (i) we get f (A) is a $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) . Also, since g is a $(1,2)^*$ -M*- π gb-closed map. Hence, g(f

المبلد 22- العدد 95- 2016

- 43 -

(A)) is a $\mu_1\mu_2$ -closed set in (Z, μ_1,μ_2). But $g(f(A)) = g \circ f(A)$. Then $g \circ f$ (A) is a $\mu_1\mu_2$ -closed set in (Z, μ_1,μ_2). Therefore, $g \circ f$ is a (1,2)*-M*- π gb-

closed map. The prove of Part -ii- and -iii- are similar to Part -i-.

Proposition (3.10): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$ be any two maps. Then $g \circ f: (X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$ is $(1, 2)^*$ -

 π gb-closed map iff is a (1,2)*-M*- π gb-closed map and g is a

- (i) $(1,2)^*$ - π gb-closed maps.
- (ii) $(1,2)^*$ -M- π gb-closed map.

Proof:

(i) Let A be a τ₁τ₂-closed set in (X, τ₁, τ₂) .By Remark (2.7) Part (i) we get A is a (1,2)*-πgb-closed set in (X, τ₁, τ₂) .Since f is a (1,2)*-M*-πgb-closed map. Thus, f (A) is a σ₁σ₂-closed set in (Y,σ₁,σ₂) . Also, since g is a (1,2)*-πgb-closed map. Hence, g(f (A)) is a (1,2)*-πgb-closed set in (Z,μ₁,μ₂).But, g(f (A)) = g∘f (A). Then, g∘f (A) is a(1,2)*-

πgb-closed set in (Z, μ_1, μ_2) . Therefore, $g \circ f$ is a $(1,2)^*$ -πgb-closed map. The proof of Part (ii) is similar to Part (i).

However the following proposition holds. The proof is easy and hence omitted.

Proposition (3.11): Let $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$ be any two maps. Then $g \circ f:(X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$ is $(1, 2)^*$ - π gb-closed map if g is a $(1, 2)^*$ - M^* - π gb-closed map and f is a

(i) $(1,2)^*$ -closed maps.

(ii) $(1,2)^*$ - π gb-closed map.

Proposition (3.12): Let $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$ be any two maps, such that $g \circ f : (X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$ is $(1,2)^*$ -M*- π gb-closed map if f is a $(1,2)^*$ - π gb-irresolute map and surjective, then g is $(1,2)^*$ -M*- π gb-closed map.

Proof:- Let A be a $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) . Since f is $(1,2)^*$ - π gb-irresolute. Thus, $f^{-1}(A)$ is a π gb-closed set in (X, τ_1, τ_2) . Also, since $g \circ f$ is a $(1,2)^*$ - M^{**} - π gb-closed map. Then, $(g \circ f)(f^{-1}(A))$ is a $\mu_1\mu_2$ -closed set in (Z,μ_1,μ_2) . By hypothesis $g \circ f$ is surjective. Hence, $(g \circ f)(f^{-1}(A)) = g \circ (f \circ f^{-1})(A) = g(A)$. Therefore g(A) is a $\mu_1\mu_2$ -closed set in (Z,μ_1,μ_2) . Hence, g is $(1,2)^*$ - M^{**} - π gb-closed map.

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

Proposition (3.13): Let $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$ be two mappings, such that $g \circ f: (X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$ be $(1,2)^*$ -M*- π gb-closed mapping. Then g is $(1,2)^*$ -M*- π gb-closed map. If a surjective map f is a:

- (i) $(1,2)^*$ -continuous map and (Y,σ_1,σ_2) is $(1,2)^*$ - π gb-space.
- (ii) $(1,2)^*$ -g-continuous map, (X, τ_1, τ_2) is $(1,2)^*$ -T_{1/2} space and (Y,σ_1,σ_2) is $(1,2)^*$ - π gb-space.

(iii) $(1,2)^*$ - π gb -continuous map, (X, τ_1, τ_2) is $(1,2)^*$ - π gb-space. **Proof:**

- (i) Let A be a $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) .Since (Y,σ_1,σ_2) is a $(1,2)^*$ - π gb-space and by using Definition (2.10) Part (ii) we get A is a $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) .Also, since f is a $(1,2)^*$ -continuous map. Thus $f^{-1}(A)$ is $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) . By Remark (2.7) Part (i) (every $\tau_1\tau_2$ -closed set is $(1,2)^*$ - π gb-closed). So, we have $f^{-1}(A)$ is a $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) and by hypothesis $g \circ f$ is $(1,2)^*$ - M^* - π gb-closed map. Then, $(g \circ f)(f^{-1}(A)) = g(f \circ f^{-1}(A)) = g(A)$. That is g(A) is a $\mu_1\mu_2$ -closed set in (Z,μ_1,μ_2) . Therefore, g is a $(1,2)^*$ - M^{**} - π gb-closed map.
- (ii) Let A be a $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) .By hypothesis (Y,σ_1,σ_2) is a $(1,2)^*$ - π gb-space and by using Definition (2.10) Part (ii) we get A is a $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) .Also, since f is a $(1,2)^*$ -g-continuous map. Thus, $f^{-1}(A)$ is a $(1,2)^*$ -g-closed set in (X, τ_1, τ_2) ,since (X, τ_1, τ_2) is a $(1,2)^*$ - $T_{1/2}$ -space and by using Definition (2.10) Part (i) we have $f^{-1}(A)$ is a $\tau_1\tau_2$ -closed set in (X, τ_1, τ_2) .By Remark (2.7) Part (i) we get $f^{-1}(A)$ is a $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) and since $g \circ f$ is $(1,2)^*$ - M^* - π gb-closed map. Then, $(g \circ f)(f^{-1}(A))$ is a $\mu_1\mu_2$ closed set in (Z,μ_1,μ_2) .But f is a surjective and $(g \circ f)(f^{-1}(A)) = g(f \circ f^{-1}(A)) = g(A)$. Hence, g(A) is a $\mu_1\mu_2$ -closed set in (Z,μ_1,μ_2) .Therefore, g is a $(1,2)^*$ - M^{**} - π gb-closed map. The proof of Part (iii) is similar to Part (i).

Proposition (3.14): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$. be two maps, such that $g \circ f: (X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$. be $(1, 2)^* - M^* - \pi gb$ -closed map. Then f is a $(1, 2)^* - M^{**} - \pi gb$ -closed map. If: (i) g is $(1, 2)^*$ -continuous and injective.

المجلد 22- العدد 95- 2016

- 45 -

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

- (ii) g is $(1,2)^*-\pi$ gb-continuous, injective and (Y,σ_1,σ_2) is a $(1,2)^*-\pi$ gb-space.
- (iii)g is $(1,2)^*$ -M- π gb-continuous, injective and (Y,σ_1,σ_2) is a $(1,2)^*$ - π gb-space.

(iv) g is $(1,2)^*$ -g-continuous, injective and (Y,σ_1,σ_2) is a $(1,2)^*$ -T_{1/2}-space. **Proof:**

- (i) Let A be a (1,2)*- π gb-closed set in (X, τ_1 , τ_2). Since $g \circ f$ is (1,2)*-M*- π gb-closed map. Thus, $(g \circ f)(A)$ is a $\mu_1\mu_2$ -closed set in (Z,μ_1,μ_2) . Also, since g is a (1,2)*-continuous map. Then $(g^{-1}(g \circ f))(A)$ is a $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Since g is injective and $(g^{-1}(g \circ f))(A) = (g^{-1} \circ g) f(A) = f(A)$. Hence, f(A) is a $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) . Therefore f is a $(1,2)^*$ -M*- π gb-closed map.
- (ii) Let A be a (1,2)*- π gb-closed set in (X, τ_1 , τ_2). Since $g \circ f$ is (1,2)*-M*- π gb-closed map. Thus $(g \circ f)(A)$ is a $\mu_1\mu_2$ -closed set in (Z,μ_1,μ_2) . Since g is a (1,2)*- π gb-continuous map. Then $(g^{-1}(g \circ f))(A)$ is a (1,2)*- π gb-closed set in (Y, σ_1,σ_2). By hypothesis (Y, σ_1,σ_2) is a (1,2)*- π gb-space and by Definition (2.10) Part (ii) we have $(g^{-1}(g \circ f))(A)$ is a $\sigma_1\sigma_2$ -closed set in (Y, σ_1,σ_2). Also, since g is injective and $(g^{-1}(g \circ f))(A) = (g^{-1} \circ g) f(A) = f(A)$. Hence, f(A) is a $\sigma_1\sigma_2$ -closed set in (Y, σ_1,σ_2). Therefore f is a (1,2)*-M*- π gb-closed map.

The proof of Part (iii) and (iv) as similar to Part (ii).

Now, we given other type of $(1,2)^*$ - M-closed mapping is called $(1,2)^*$ -M**- π gb-closed.

Definition (3.15): A mapping $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be (1,2)*-M**- π gb-closed if f(A) is (1,2)*-regular closed set in (Y, σ_1, σ_2) for every (1,2)*- π gb-closed set A in (X, τ_1, τ_2) .

Example (3.5):-

Let X= {a,b}, Y={a,b,c}, τ_1 ={X, ϕ } and τ_2 ={X, ϕ ,{a}}, σ_1 ={Y, ϕ ,{a}}, σ_2 ={Y, ϕ ,{b,c}}. Then $\tau_1\tau_2$ -open sets in (X, τ_1 , τ_2) are {X, ϕ ,{a}} and $\sigma_1\sigma_2$ -open set in (Y, σ_1 , σ_2) are {Y, ϕ ,{a},{b,c}}.(1,2)*- π GBC(X, τ_1 , τ_2)={X, ϕ ,{a},{b}} and (1,2)*-RC(Y, σ_1 , σ_2)={Y, ϕ ,{a},{b,c}}, , let $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ defined by f(a) = f(b) = a. Then, clearly f is (1,2)*-M**- π gb-closed mapping.

Proposition (3.16): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -M**- π gb-closed mapping, then f is $(1,2)^*$ -M*- π gb-closed.

المبلد 22- العدد 95- 2016

Proof:-

Let A be (1,2)*- π gb-closed set in (X, τ_1 , τ_2). Since f is (1,2)*-M**- π gb-closed map, thus f (A) is (1,2)*-regular closed set in (Y, σ_1 , σ_2), (since every (1,2)*-regular closed set is (1,2)*-closed set, [4]). Therefore, f (A) is $\sigma_1\sigma_2$ -closed set in (Y, σ_1 , σ_2). Hence, f is (1,2)*-M*- π gb-closed map.

The converse of Proposition (3.16) may not be true in general as shown in the following.

Example (3.6):-

Let X= {a,b,c}, τ_1 ={X, ϕ ,{a},{b}} and τ_2 ={X, ϕ ,{b,c}}. Then $\tau_1\tau_2$ open sets in (X, τ_1 , τ_2) = {X, ϕ ,{a},{b},{b,c}}, $\tau_1\tau_2$ -closed set in (X, τ_1 , τ_2) = {X, ϕ ,{a},{c},{b,c}}, (1,2)*-

 $\pi \text{GBC}(X, \tau_1, \tau_2) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \text{ and } (1,2)^* - \text{RC}(X, \tau_1, \tau_2) = \{X, \phi, \{a\}, \{b, c\}\}. \text{Define } f : (X, \tau_1, \tau_2) \longrightarrow (X, \tau_1, \tau_2) \text{ by } f(a) = a, f(b) = b \text{ and } f(c) = c. \text{ It is clear that } f \text{ is } (1,2)^* - M^* - \pi \text{gb-closed map, but is not } (1,2)^* - M^{**} - \pi \text{gb-closed map, since for a subset } A = \{a,c\} \text{ is } (1,2)^* - \pi \text{gb-closed set in } (X, \tau_1, \tau_2), \text{ but } f(A) = f(\{a,c\}) = \{a,c\} \text{ is not } (1,2)^* - \pi \text{gb-closed set in } (X, \tau_1, \tau_2).$

Corollary (3.17): Let $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -M**- π gb-closed mapping, then f is

(i) $\tau_1 \tau_2$ -closed map.

(ii) $(1,2)^*$ -g-closed map.

(iii) $(1,2)^*$ -sg*-closed map.

 $(iv)(1,2)^*$ - π gb-closed map.

(v) $(1,2)^*$ -M- π gb-closed map.

Proof:-

Since f is $(1,2)^*$ -M**- π gb-closed map. Then by using Proposition (3.16) we get f is $(1,2)^*$ -M- π gb-closed map and by Proposition (3.2) we have f is $\tau_1\tau_2$ -closed map (resp. $(1,2)^*$ -g-closed, $(1,2)^*$ -sg*-closed, $(1,2)^*$ - π gb-closed map.

The converse of Corollary (3.17) need not be true in general. **Example (3.7):**-

Let X={a,b,c}, τ_1 ={X, ϕ } and τ_2 ={X, ϕ ,{a}}. Then $\tau_1\tau_2$ -open sets in (X, τ_1 , τ_2) are {X, ϕ ,{a},{b},{a,b},{b,c}}, $\tau_1\tau_2$ -closed set in (X, τ_1 , τ_2) are {X, ϕ ,,{b,c}} and (1,2)*-RC(X, τ_1 , τ_2)={X, ϕ }. Define $f:(X, \tau_1, \tau_2) \longrightarrow$ (X, τ_1 , τ_2) by f(a) = a, f(b) = b and f(c) = c. Then, f is $\tau_1\tau_2$ -closed (resp. (1,2)*-g-closed, (1,2)*-sg*-closed, (1,2)*- π gb-closed and M-(1,2)*- π gbclosed) map, but f is not (1,2)*-M**-closed map, since for (1,2)*- π gbclosed set A = {a,c} in (X, τ_1 , τ_2). $f(A) = f({a,c}) = {a,c}$ is not (1,2)*regular closed set in (X, τ_1 , τ_2).

المبلد 22- العدد 95- 2016

- 47 -

Some Types of (1,2)*- M -πgb Closed Mappings Dunya Mohamed Hammed , Messa zaki salmaan

Proposition (3.18): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$.are both $(1,2)^*$ -M**- π gb-closed mappings. Then $g \circ f: (X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$.is also $(1,2)^*$ -M**- π gb-closed mapping **Proof:**-

Let A be $(1,2)^*$ - π gb-closed set in (X, τ_1, τ_2) , thus f(A) is $(1,2)^*$ -regular closed set in (Y,σ_1,σ_2) , (since every $(1,2)^*$ -regular closed set is $(1,2)^*$ -closed set, [4]). Hence, f(A) is $\sigma_1\sigma_2$ -closed set in (Y,σ_1,σ_2) and by Remark (2.7) Part (i) we get f(A) is $(1,2)^*$ - π gb-closed set in (Y,σ_1,σ_2) . Also, since g is $(1,2)^*$ - $M^{**-}\pi$ gb-closed map. Thus g(f(A)) is $(1,2)^*$ -regular closed set in (Z,μ_1,μ_2) . But g $(f(A)) = g \circ f(A)$. Thus, $g \circ f(A)$ is $(1,2)^*$ -regular closed set in (Z,μ_1,μ_2) . Therefore, $g \circ f$: $(X, \tau_1, \tau_2) \longrightarrow (Z,\mu_1,\mu_2)$, is $(1,2)^*$ - $M^{**-}\pi$ gb-closed mapping

The proof of the following Propositions are clear. Thus we omitted it. **Proposition (3.19):** Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^* \cdot M^{**} \cdot \pi gb$ closed mapping and g: $(Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$.be any mapping. Then $g \circ f: (X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$.is $(1,2)^* \cdot \pi gb$ -closed (resp. M-(1,2)*- πgb closed) map if g is

(i) $(1,2)^*$ - π gb-closed map.

(ii) M- $(1,2)^*$ - π gb-closed map.

(iii) $(1,2)^*$ -M*- π gb-closed map.

Proposition (3.20): Let $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ be any and g: $(Y, \sigma_1, \sigma_2) \longrightarrow (Z, \mu_1, \mu_2)$.be $(1, 2)^*$ -M*- π gb-closed mapping. Then $g \circ f:$ $(X, \tau_1, \tau_2) \longrightarrow (Z, \mu_1, \mu_2)$.is $(1, 2)^*$ -M*- π gb-closed map iff is

(i) M- $(1,2)^*$ - π gb-closed map.

(ii) $(1,2)^*$ -M*- π gb-closed map.

References

- 1. LellisThivogar, M. and Meera Devi, B.; "Bitopological B-Open Sets", International Journal of Algorthms Computing and Mathematics, Vol.3, No.3, August, 2010.
- 2. LellisThivogar, M. andNirmala, M.; "On Weak Separation Axioms Associated with (1,2)*-sg-closed Sets", Int.Journal of Math.Analysis, Vol.4,No.13,p.641-644, 2010.
- LellisThivogar, M. and Ravi, O.; "A Bitopological (1,2)*-Semi-Generalized Continuous Maps", Bulletin Malays. Sci.Soc., 2(29), p.79-88, 2006.
- 4. Ravi,O. and LellisThivagar, M.; "On Stronger Forms of (1,2)*-Quotient Mappings in Bitopological Spaces", Int. Journal of Math. Game Theory and Algebra, Vol.14, No.6, pp. 481-492, 2004
- Ravio, O., LellisThivagar, M. and Hatir, E.; "Decomposition of (1,2)*-Continuity and (1,2)*-α-Continuity Miskolc Math. Notes, Vol.10, No.2, pp. 163-171, 2009.
- 6. Ravi, O., LellisThivagar, M. and Joseph Isteal, M.; "A Bitopological Approach on π g-Closed Sets and Continuity", Int. Mathematical Forma, (to appear).
- Ravi, O., Pious Missier, S.SalaiParkunan, T. and MahaboobHassain, S.; "On (1,2)*-Semi-Generalized-Star Homeomorphisms", Int. Journal of Computer Science and Emerging Technologies, Vol.2, Issue 2, pp.312-318, April, 2011.
- Ravi,O., Pious Missier,S. and SalaiParkunan, T.; "On Bitopological (1,2)*-Generalized Homeomorphisms", Int. J. Contemp.Math.Sci., Vol.5,No.11,pp.543-557, 2010.
- Sreeja, D. and Janaki, C.; "On (1,2)*-πgb-Closed Sets", Int. Journal of Computer Applications, Vol.42, No.5, 2012.
- 10. Sreeja, D. and Janaki,C.; "A New Type of Homeomorphism in Bitopological Spaces", Int. Journal of Scientific and Research Publications, Vol.2, Issue 7, ISSN, 22SO-3153, July, 2012.

بعض انواع من التطبيقات المغلقة *(1,2)-من النمط M -πgb

دنيا محمد حميد ، ميساء زكي سلمان قسم الرياضيات-كلية التربية-الجامعة المستنصرية

المستخلص :

في هذا البحث، قمنا بدراسة أنواع جديدة من التطبيقات المغلقة M-*(1,2)-πgb وتدعى (التطبيقات المغلقة *(1,2)-من النمط *mgb- M والتطبيقات المغلقة *(1,2)-من النمط -πgb **M) في ثنائية التبولوجي، درسنا بعض تطبيقاته وصفاته.