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Abstract:

Let R be an associative ring with center Z (R). In this paper we introduce the

definition of reverse @- centralizers of R which is a generalization of reverse-

centralizers of R then we proved some results concerning reverse 6- centralizers

i prime and semiprime rings. Then we introduce the definition of double
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reverse G-centralizers which is a generalization of a double reverse- centralizers

after that we shall generalized some results of double reverse-centralizers to a

double reverse O-centralizers.

Keywords:

Prime ring, semiprime ring @-centralizers, reverse-centralizers, reverse -

centralizers, double reverse O-centralizers.

Introduction:
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Throughout this paper, R will represent an associative ring with center Z(R).
This paper consists of three sections. In section one, we recall some basic
definitions and other concepts which will be used in this paper. Also we shall

give some necessary remarks and some examples that illustrate these concepts.

In section two, we give the definition of reverse @-centralizer, and we proved

some results when R is prime or semiprime ring. In section three, we shall

introduce the definition of double reverse G-centralizer, and we prove some

results when R 1s prime and semiprime ring.
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$: Basic concepts:

Definition 1.1: [1]

A ring R is called a prime ring if for any a, b € R, a R b={0}. implies that either

a=0 or b=0.
Definition 1.2: [1]

A ring R 1s called a semiprime ring if for any a€R, aRa ={0}, implies that a=0.

Remark 1.3: [1]

Every prime ring is a semiprime ring, but the converse in general 1s not true.
The following example justifies this remark.

Example 1.4: [6]

Zs 15 a semiprime ring but is not prime. Let a €R such that a R a ={0}, implies

that a®> =0, hence a=0, therefore R is a semiprime ring. But R is not prime, since
240 and 3#0 and implies that 2R3={0}.
Definition 1.5: [4]

Let R be an arbitrary ring. If there exists a positive integer n such that na=0, for

all a €R, then the smallest positive integer with this property i1s called

characteristic of the ring, by symbols we write char R=n. If no such positive
integer exists (that 1s, n=0 1s only integer for which na=0, for all a in R), then R
1s said to be of characteristic zero.

Definition 1.6: [4]

A ring R 1s said to be n-torsion free where n # 0 1s an integer if whenever na=0

with a € R, then a=0.
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Remark 1.7: [4]

A characteristic not equal n is equivalent to n-torsion free in a prime ring.

Definition 1.8: [2]

Let R be a ring. Define a Lie product [...] on R as follows:
[x,y] =xy-yx, for all x,yE R.

Properties 1.9: [2]

Let R be a ring, then for all x,y,zE R, we have:

- [xyz] =y[x.2] +Ix,y]2
xXy,z] =x[y,z] + [x,z]y
xtyz] = [x.z] +[y.2]
4 [xytz] = [xy] + [x7]

Definition 1.10: [3]
Let R be a ring. Define aJordan product on R as follws: aob =ab+ba, for all a,b&

R.

Definition 1.11: 2]

Let R be a ring, the center of R denoted by 7 (R) and is defined by:
7. (R)y={x€R xr=rx, forallr £ R}

Definition 1.12: [2]
Let R be ring with center 7 (R). A mapping f:R—R 1is said to be centralizing 1f
[f(x), x] € Z (R), For all x £ R, and f 1s said to be commuting 1if [{(x), x] =0 for

allx € R.
Definition 1.13: [6]

Let R be ring, an additive mapping f:R—R is called a homomorphism if f{xy) =
f(x) f(y), for all x,ye R. And 1s called anti-homomorphism if f(xy) = f(y) {(x),
for all x,y£ R.
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Definition 1.14: 6]

Let R be ring, an additive mapping [:R—R 1s said to be Jordan homomorphism

if f{x*) = f(x) f(x) holds for all x € R.

Remark 1.15: J6]

Every homomorphism 1s a Jordan homomorphism. But the converse in general
1s not true.

The Following example 1llustrate this remark

Example 1.16: [6]

Let F be field, and let M, (F) be a ring of all matrices of order 2 over F.

Define fR—=R as F ([i‘ z,]) = Ez ;] for all a,b.c.d €F.

Then [ 1s a Jordan homomorphism but 1s not homomorphism.

Definition 1.17: [3]

A left (right) centralizer of a ring R 1s an additive mapping T:R—R which
satisfies T(xy) = T(X) y (T(xy) = xT(y)), for all x,y£ R. A centralizer of a ring R

1s both left and right centralizer.

Remark 1.18: 3]

Let R be a ring with an 1dentity element, T:R—R 1s a left (right) centralizer if
and only if T is of the form T(x) = ax (T(x) = x a ), for some fixed element a=

R.
Example 1.19: [1]

Let F be field, and let D, (F) be a ring of all diagonal matrices of order 2 over F.
Let T:D, (F) =D, (F) be an additive mapping defined as
Ty D =155} forallabe F.

g b
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Then T 1s a centralizer.

- )
%
é

2013 Gredhs g oudd <2

Bl 2 A3 208 A




Some Results of Reverse 6- Centralizers on prime Rings........ Ikram A. Saed

Definition 1.20: [5]
Let R be a ring and let T,S:R—R be additive mappings, then a pair (1.S) is

called a double centralizer if T 1s a left centralizer, S is a right centralizer, and

they satisty a balanced condition x T(y) =S(x)y for all x,y€ R.

Example 1.21: [5]
Define T,S: M, (F) =M, (F) by
T({a’ D}) = ic C], for all a,b,c.d€ F.

r
—
ol

S([iji]) = [; 2], for all a,b,c.de F.

Then (T,S) 1s a double centralizer.
Remark 1.22: [5]
Let R be a ring and let T:R—R be centralizer, then it 1s clear that (T.T) is a

double centralizer.

Definition 1.23: [4]
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An additive mapping T:R—R 1s called a left (right) @- centralizer if for all x,y&

R, T(xy) = T(x) 8(y) (T(xy) = 6(x) T(y)). A - centralizer of R 1s both left and

right @- centralizer, wheref is a homomorphism on R.

Definition 1.24: [5]

Let R be a ring. An additive mapping T:R—R 1s said to be left (right) reverse-
centralizer of R, 1f T(xy) = T(y)x (resp. T(xy) =yT(x)), for all x,ye R. A

reverse- centralizer of R 1s both left and right reverse- centralizer.

Example 1.25: [5]

Let F be a Field, and R be ring of triangular matrices of the form.

D8E &
X= E:fi;} foralla,b,ccd€F,xER .

GO0 o
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GO

Define T:R—R by T(x) = Emm}, for all ¢ =F and x € R.

DR
SoC o

Then T 1s a reverse-centralizer.
Definition 1.26: [5]
Let R be a ring, and let T,S :R  —R be additive mappings then a pair (T,S) is

called a double reverse-centralizer, if T is a left reverse- centralizer, S is a right

reverse-centralizer and they satisfy the condition XT(y) = S(X)y, for all x,yE R.

Definition 1.27: [6]
A nonempty subset U of R is said to be a (two-sided) ideal of R if U is a

subgroup of R under addition and for every u € U andr £ R, both ur and ru are

n U.

§; Reverse O-centralizers:

Definition 2.1:
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Let R be a ring, and O be an anti-homomorphism on R. An additive mapping

T:R—R 1s called a left (right) reverse @-centralizer if for all x,y€ R, T(xy) =

T(y) O(x) (T(xy) = 8(y) T(x). A reverse O-centralizer of R 1s both left and right

reverse O-centralizer.

Example 2.2:
Let F be a field, and let M, (F) be a ring of all matrices of order 2 over F.

Define T: M, (F) = M, F)as T ([*3) ={2%], forallabcd €F.

- )
%
é

2013 Gredhs g oudd <2

Bl 2 A3 208 A




Some Results of Reverse 6- Centralizers on prime Rings........ Ikram A. Saed

andDefine 0: M, (F') »My(F) asO ({*5) ={ 7], forall a,b.c,d € F.

Then T 1s a reverse O-centralizer.
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Theorem 2.3:

Let R be a prime ring, I be an ideal of R, and T 1s a left reverse @-centralizer, if

T =6 onl then T = 6 on R, where & be a non-zero surjectiveanti-

homomorphism.

Proof:
By the hypothesis, we have

T(x) = 6(x) forall x £1 (D

Replacing x by xr in (1), whenr € R, x € I, we get

T(xr) = O(xr)
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T(r) O(x) = O(1) O(x)

(T(r)»-O(r) B(x) =0forallr € R, x£1 (2)

Again, replace x by xtin (2), whent € R, x € [, to get

(T(r)-O0(r) O(xt)=0 forallt,r ER, x €L

(T(0)-0(1)) O(HO(x) =0

By the surjectivity of @ and the primeness of R 1t follows that T = 0.

2,
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Theorem 2.4:

Let R be a semiprime ring and let T: R =R be a mapping satistying T(y) 6(x) =

G(y) T(x), for all x,y€ R, then T is reverseO@-centralizer where O is a surjective

anti-homomorphism on R.

roojy.

we need to show that T is an additive and T(xy) = T(y) @(x) = O(y) T(x), for all

Xy, £ R. So, let x,y.z, £ R. Then

(TCcty)- T()- T() 8(z) =T(x+y) 8(2)- T(x) 8(2)- T(y) 8(2)

= 0(xty) T(2)- () 1(2)- O(y) T(2)
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= 0() T(Z)+ B(y) T(2)- 6(x) T(7)- O(y) T(2)=0

By the surjectivity of @ and the semiprimeness of R, we get

T(x+y) =T(x) +T(y), for all x,y, € R.

To prove the second property, consider

(T(xy)- T(y) 8(x)) 8(2) = T(xy) 8(z)- T(Y)B(X) 8(2)

=0 (xy) T(2)- O(y) T (x) O(2)

= 0(y) 0(0) 1(2)- O(y) 0(x) T(2)=0
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Again, by the surjectivityof 0 and the semiprimeness of R, we get

T(xy) =T(y) 8(x) = O(y) T(x), for all x,y, € R.

Theorem 2.5:

Let R be a 2-torsion free semiprime ring and T be a left reverse O-centralizer

which satisfies T(xoy) =0, for all x,y, € R, where 6 1is a surjective anti-

homomorphism on R, thenT=0

Proof:

we have

T(xy+yx) =0, for all x,y, € R. (D

On the other hand, we obtain
ég‘;“”
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T(xy) + T(yx) =0, for all Xy, € R.

T(y) @ (x)+T(x) @ (y) =0, forall x,y, € R.

Replacing x by xz+zx in (2), we find

T(y) @ (xz+zx) + T(xz+zx) O(y) =0

From (1) and (3), we obtain

T(y) O (xz+zx) =0, for all x,y,z € R.

Again replacing z by xz+7x, to get

T(Y) O (x*z+zx®) +2T(¥) O (xzx) =0, for all x,y,z € R.

From (4) and R 1s a 2-torsion free, gives

e

Ikram A. Saed

(2)

(3)

(4)
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T(y) O (xzx) =0, for all x,y,z€ R. (6)

Since O 1s onto, replace 8(z) with 8(z) T(y), implies that

T(y) €@ (x) 8(z)T(y) 8(x) =0, for all x,y,zZ R.

By the surjectivity of@ and the semiprimeness of R, we get

T(y) O(x) =0, for all x,y, € R.

A gain by the semiprimeness of R, we have T=0.
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Theorem 2.6:

Let R be a prime ring, and let I be an i1deal of R. If T(xr) =T(r) 8(x), for all x £

R and x£ I, then T 1s a left reverse O-centralizer on R, where O is a non-zero

surjective anti-homomorphism on R.

Proof:

By the assumption of theorem, we have

T(xr)=T(r) O(x), foralltrERand x £ L

This reduces to

T(xsr) = T(sr) O(x)=T(r) B(s) O(x), forall r,sE Rand x € .
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It the follows that:(T(sr)- T(r)0(s))0(x) =0, for all r,s., € R and x € L.

r.e. (T(sr)- T(r) B(s))O(1) O(x) =0, forall r,;s;tc Rand x € 1.

By the surjectivity of @ and the primeness of R, we obtain T(sr) = T(r) O(s), for

all r,s€ R.

Lemma 2.7:
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Let R be a noncommutative prim ring, and 1T: R—R be a left reverse @ —

centralizer. If T(x) € Z(R) holds for all x € R, then T=0, where @ 1s a surjective

anti- homomorphism on R.
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Proof:
We have

[T(x). y] =0, for all x,yE R (D

Putting zx for x in (1), we get [T(zx), y] =0

[T(x) 8(z), y] =0, for all x,y,z& R (2)
This gives: T(x) [O(2), y] + [T(X), v] O(2) =0, for all x,y,z€ R. (3)
From (1), we have: T(x) [0(2), y] =0, for all x,y.z€ R (4

Putting wx for x 1n (4), we get

T(x) B(w) [B(Z), y] =0, for all x,y,z,-wE R.
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Since R 1s a noncommutative prime ring and by the surjectivty of 0, it follows

T=0.

Lemma 2.8:

Let R be a ring with an 1dentity element, and T: R—R is a left (right) reverse 0 —

centralizer if and only 1f T 1s of the form T(x) =a8(x) (T(x) = O(x) a) for some

fixed element a< R where 0 is surjective anti- homomorphism on R.

Proof:
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Let T be a leftreverse O -—centralizer, then T(yx) = T(x) O(y). for all

x,y= R.Replace x by 1 we get T(y) =a0(y), for all y € R.

Where a=T(1). If T(yx) = 6(x) T(y), we obtain the assertion of the lemma with

similar approach as above. To show the converse, assume

T(x) = aB(x), for all x € R, then

T(yx) =a B(yx) =a O(x) 8(y) =T(x) 6(y), for allx,yE R,
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Hence T 1s a left reverse O —centralizer.

Similarly, we can show that T is a right reverse @ —centralizer 1if T(x) =0(X) a,

forall x € R.

Theorem 2.9:

Let R be a prime ring, and T is a left reverse @ —centralizer of R which satisfies

T(x) =a O(x) + O(X) a, for all x € R and fixed ac R. Then ac Z(R) where 8 1s a

non-zero surjective anti- homomorphism on R.
Proof:
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We have

T(yx) =T(x) B(y), for all x,y£ R (D

ie. T(yx)=(a O(x) + O(x) a) O(y)

On the other hand, we obtain

T(yx) =a O(yx) +O(yx) a, for all x,yc R (2)

On combining last two equations, we obtain

2(x) [a, B8(y)] =0, for all x,yE R (3)

Further taking x=rx in (3), we get
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@(x) O(r)| a, O(y)] =0, for all x,yE R (4

By the surjectivity of @ and the primeness of R, yieds [a, O(y)] =0, for all y £ R.

§; Double Reverse O-centralizers:

Definition 3.1:
Let R be a ring, and let T,S: R—R be additive mappings then a pair (T,S) 1s

called a double reverse O —centralizer,if T 1s left reverse O —centralizer, S 1s a
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right reverse @ —centralizer and they satisfy the condition 0(x) T(y) =S(x) O(y),

for all x,y€ R. where @ 1s an anti-homomorphism on R.

Example 3.2:
Let F be a field, and let M, (F) be a ring of all matrices of order 2 over F.

And O on My(F) defined by

0 ((<2Dh=[; J}forall abcdEF.

L

Let T,S: M, (F) =M,(F) be additive mappings defined as.
T (}? z,]) =[7%] forallabcdEF.

d
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S (E’f j) = EZ j foralla,bc d€F.

Then (T,S) 1s a double reverse € —centralizer.

Theorem 3.3:

Let R be a semiprime ring and T,S: R—R be mappings satisfying

E(x) T(y) = S(x) O(y), for all x,yE€ R ...(1). Where € 1s an anti-homomorphism

on R.Then (T.S) is a double reverse 8 —centralizer.

Proof:
We need to show that T.S are additive mappings, and

T(xy) =T(y) 6(x), for all x,y= R.
o
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S(xy) = O(y) S(x), for all x,y€ R.

Now replacing y by y+z in (1), we get

6(x) T(y+z) = S(x) O(y+2z), for all x,y.z= R.

Ox) T(y+2) = 5(0) O(y) + 5(x) O(2)

(x) T(y+z) = O(x) T(y) + 8(x) T(z), for all x,y,zE R.

Hence O(x) (T(y+z) — T(y)- T(z)) =0, for all x,y,z€ R.

e

(2)

(3)
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By the semiprimeness of R, we get, T(y+z) = T(y) + T(2), for all y,z€ R.

Similarly, we can show that

S(x+y) = S(x) + S(y), for all x,yE R.

Now, replacing y with yz in (1), we obtain

0(x) T(yz) = S(x) O(yz), for all x,y,z€ R.

2(x) T(yz) = S(x) 8(z) B(y) , for all x,y,z€ R.

(x) T(yz) = 8(x) T(z) O(y), for all x,y,z€ R.

Implies that: 0(x) (1(yz)- T(z) 6(y)) =0, for all x,y,zE R. (4
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By the semiprimeness of R we get, T(yz) =T(z) O(y), for all y,z€ R.

Similarly we can show that: S(xy) = O(y) S(x), for all x,y€ R.

Then (T,S) 1 a double reverse & —centralizer.

Theorem 3.4:
Let R be a prime ring, I be non-zero ideal of R. Let T,S: R—Rbe additive

mappings such that T 1s a left reverse @ —centralizer, S is aright reverse 0 —
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centralizer. Where @ 1s an anti- homomorphism on R, and they satisfying 0(x)

T(y) = S(x) B(y), for all x,yE I.Then (T,S) 1s a double reverse & —centralizer.

Proof:

We have: (x) T(y) = S(x) (y), for all x,y€ L (D

Replace x with rx in (1), when x € [ and r £ R, we get

(x) (O() T(y)-S(n) 8(y)=0,forallr € R and x.y€ L (2)

Le. X)) R(MT(Y)-S(m) B(y))=0,forallr £ Rand x,y€ L
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By the primeness of R and since I be a non-zero ideal of R, we get

e(r) T(y) = S(r) 8(y), forallr € R and yc 1. (3)

Replace y with yt in (3), where t € R and y € I, we get

(O() T()- S(n) 8)) B(y)=0, foralltre Rand y € L

Implies that: (O(r) T(t)- S(r) O(t)) R1 =0, for all t,re R.

By the primeness of R, we get.

O(1) T(t) = S(r) O1), for all t,re R,
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Then (T,S) 1s a double reverse O —centralizer.

Theorem 3.5:

Let R be a prime ring, I be a non-zero 1deal of R and (T,S) be a double reverse

@ —centralizer. Where @ 1s an anti- homomorphism on R.

If T=S on I, then T=S on R

Proof:
We have: T(x) =S(x), forall x £ L. (D

Replacing x with xr in (1), whenr £ R and x £ 1, we get, T(xr) = S(xr)

T(r) O(x) =0(r) S(x) = 6(r) T(x), forallr€R x, £ 1L (2)

Since (T,S) 1s a double reverse 8 —centralizer, then
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T(r) O(x) =S(r) 0(x), forallrE R, x £ L. (3)

re. (T(r)- S RI=0, forallr £ R.

Since R 1s a prime ring and [ be a non-zero ideal of R, we get T=S.

Theorem 3.6:

Let R be a semiprime ring, and (T.8S) be a double reverse O —centralizer. Where

@ is an anti- homomorphism on R. Then T (or S) is a reverse @ —centralizer if

and only if T=S.
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Proof:

We have: T(yx) = T(x) O(y) = 0(x) T(y), for all x,yE R.

On the other hand, 8(x) T(y) = S(x) 8(y), for all x,y€ R.

This gives: (T(x)- S(x)) O(v) (T(x)- S(x)) =0, for all x,y€ R.

By the semiprimeness of R, we get T=S.

Conversely, suppose T(x) = S(x), forall x € R.

1e. T(x) O(y) = 0(x) S(y) = O(x) T(y), for all x,yE R.
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Implies that T(xy) = T(x) O(y) = 8(x) T(y), for all x,yE R.

Theorem 3.7:

Let R be a prime ring, I be a non-zero ideal of R, and (T,S) be a double reverse

@ —centralizer. Where @ 1s an anti- homomorphism on R.

If T(xr) = S(r) 8(x), forall r £ R, x £ I, then T=S.

Proof:
We have: T(xr) = T(r) 6(x) = S(r) O(x), forallr £ R, x € L (D
This reduces to: (T(r)- S(1))B(x) =0, forallr e R, x £ L. (2)
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Replacing x with xt in (2), whent £ R, x £ 1. Leads to

(T(r)- S(r)) B(xt) =0, forallrtc R, x € L.

(T(r)- S(r) o) B(x)=0, forallrte R, x € .

r.e. (T(r)- S(r)) RI= 0, for allr £ R.

since R 1s a prime ring and I be a non-zero ideal, we have T=S
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