Connected ideal space and continuous function types

Maisaa Z. Salman

Department of Mathematics, College of Education Al-Mustansirya University

Abstract

In this search we will study

1) The continuous image of *-connected ideal space.

- 2) The S-connected ideal space.
- 3) The S*-connected ideal space.
- 4) The S**-connected ideal space.

And we get this result: the (continuous, the S*-continuous) image of *connected ideal space is connected space.

But the (S-continuous, S^{**-} continuous) image of *- connected ideal space is not necessary be connected space.

1. Introduction:

The notion of S- open set was introduced in 1963 [5]. The concepts (Scontinuous function, S*- continuous function, S**-continuous) was introduced by Mustafa in 2001 [4]. *- Connected ideal space was introduced by E kici, E., noiri, T. [1].

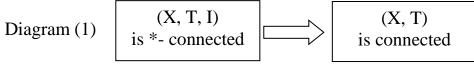
In section 2, the connected space, *-connected ideal space were introduced, also study the relation between these types, and study the relation between continuous function, S- continuous function, S*- continuous function S**- continuous function.

And we will recall some important theorems and remarks will be used in section 3. in section 3, the main results will be studied.

2. Preliminaries:

In this section, the connected space and connected ideal space was defined and study the relation between connected space and connected ideal space and defined continuous, S-continuous, S*-continuous and S**-continuous functions and study the relation between them.

Definition (2-1) ^[5]


A sub set A of a topological space x is (s-open) if $A \subseteq int (A)$. Definition (2-2) ^[6]

A space X is (connected space) iff X can not is decomposed in to the union of two disjoint non empty open sets, other wise X is called disconnected. **Definition** (2-3)^[1]

An ideal topological space (X,T,I) is a topological space (X,T) and an ideal I on (X,T) and will be denoted by I T S ideal topological space. **Definition** (2-4) ^[1]

An ideal space (X,T,I) is called *-connected ideal space if X can not be written as the disjoint union of non empty open set and non empty *-open set. **Remark (2-5)**^[1]

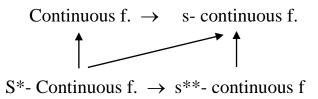
The following implications hold for an ideal space (X,T,I) these implications are most reversible.

Definition (2-6) ^[6]

Let X, Y be two I.T.S. The functions f: $x \rightarrow y$ is continuous iff the inverse image of open set in y is open set in X.

Definition (2-7) ^[4]

Let X, Y be two I.T.S. The function f: $x \rightarrow y$ is S-continuous iff the inverse image of each open set in y is s-open set in X


Definition (2-8) ^[4]

Let X, Y be two I.T.S. The function f: $x \rightarrow y$ is S*- continuous iff the inverse image of each S- open set in y is open set in X.

Definition (2-9) ^[4]

Let X, Y be two I.T.S. The function f: $x \rightarrow y$ is S^{**}- continuous iff the inverse image of each S-open set in y is S-open set in X. Remark (2-10)^[3]

Let X, Y be two I.T.S. Diagram (2) show the relation between continuous functions types where the converse is not necessary true

Diagram (2)

Preposition (2-11) [6]

The continuous image of a connected space is connected.

Preposition (2-12) ^[3]

The S-continuous image of a connected space is not necessary connected.

Preposition (2-13) ^[3]

The S*-continuous image of a connected space is connected.

Preposition (2-14) ^[3]	
العدد	مجلة كلية التربية الأساسية > 36
التاسع والستون 2011	

The S**-continuous image of connected space is not necessary connected.

Preposition (2-15) ^[3]

The continuous image of connected space is not necessary S-connected. **Preposition (2-16)** ^[3]

The continuous image of connected space is not necessary S *-connected. **Preposition** (2-17) ^[3]

The S*-continuous image of a connected space is S- connected space.

Preposition (2-18) ^[3]

The S**-continuous image of a connected space is not necessary Sconnected space.

Remark (2-19)^[3]

1- Open set \Rightarrow S-open set

2- S-connected \Rightarrow connected space

3. Results and Discussion

In this section, the {continuous, S-continuous S*-continuous, S**continuous } image of *-connected ideal space will be study.

Theorem (3-1)

The surjective continuous image of *-connected ideal space is connected.

Proof

Let f: $x \rightarrow y$ be continuous function, x is *-connected ideal space.

by remark $(2-5) \rightarrow x$ is connected space \rightarrow by preposition (2-11) and since f is surjective

 \rightarrow y = f(x) is connected space.

Theorem (3-2)

The surjective continuous image of *-connected ideal space is not necessary S-connected.

Proof

Let f: $x \rightarrow y$ be continuous function, let x be *-connected ideal space.

 \rightarrow by Remark (2-5) x is connected space.

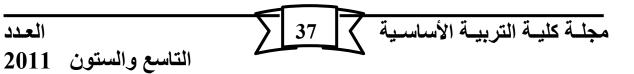
 \rightarrow by preposition (2-11) and since f is surjective.

 \rightarrow y = f(x) is not necessary S-connected space

Since by remark (2-19) (3).

Theorem (3-3)

The surjective S-continuous image of *-connected ideal space is not necessary connected.


Proof

العدد

Let f: $x \rightarrow y$ be continuous function

let x be *-connected ideal space

 \rightarrow by remark (2-5) x is connected space

 \rightarrow by preposition (2-12) and f is surjective y = f(x) is not necessary connected space.

Theorem (3-4)

The surjective S-continuous image of *-connected ideal space is not necessary S-connected.

Proof

Let f: $x \rightarrow y$ be S-continuous function, let x be *-connected ideal space.

 \rightarrow by remark (2-5) x is connect space.

 \rightarrow by preposition (2-13) and since f is surjective \rightarrow y=f(x) is not necessary S-connected space.

Theorem (3-5)

The surjective S^* -continuous image of *-connected ideal space is connected.

Proof

Let f: $x \rightarrow y$ be S*-continuous function, x be *-connected ideal space,

 \rightarrow by remark (2-5) x is connected space

 \rightarrow by and since f is surjective preposition (2-14)

f(x) = y will be connected space.

Theorem (3-6)

The surjective S*-continuous image of *-connected ideal space is S-connected space.

Proof

Let f: $x \rightarrow y$ be S*-continuous function, x be *-connected ideal space.

 \rightarrow by remark (2-5) x is connected space.

 \rightarrow by preposition (2-15) and since f is surjective

 \rightarrow f(x) =y will be S-connected space.

Theorem (3-7)

The surjective S^{**} -continuous image of *-connected ideal space is not necessary connected.

Proof

Let f: $x \rightarrow y$ be S^{**}-continuous function, x be *-connected ideal space

 \rightarrow by remark (2-5) x is connected space.

 \rightarrow by preposition (2-16) and since f is surjective y =f(x) is not necessary connected.

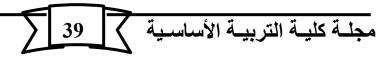
Theorem (3-8)

The surjective S^{**} -continuous image of *-connected ideal space is not necessary S-connected.

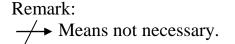
Proof

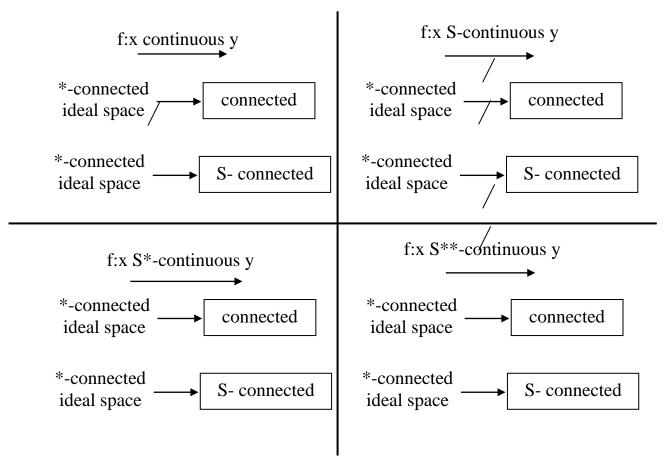
العدد

Let f: $x \rightarrow y$ be S**-continuous function, let x be *-connected ideal space.


 \rightarrow by remark (2-5) x is connect space.

 \rightarrow by remark (2-3) x is connect space.


 \rightarrow by preposition (2-17) and since f is surjective, f(x)=y


y is not necessary S-connected space

التاسع والستون 2011

Conclusions

<u>Reference</u>

[1] Ekici, E., Noiri, T., <u>"*- hypercennected ideal topological spaces</u>" submitted.

[2] L. E. Singler <u>"Algebra"</u>, Springer Verlage, 1976.

مجلية كليبة التربيبة الأساسية

- [3] Mahmood M. H., Hamed D. M. Salman M. Z. <u>"On connected and connectivity functions types"</u>, (submitted) 2010.
- [4] Mustafa H.I. <u>"On connected functions"</u> M.Sc. thesis, university of Al Mustansirya.
- [5] N. Levine <u>"Semi open sets and semi continuity topological spaces"</u>, Amer Matn. Mothy (70) (1963), 36.
- [6] S. Willard, <u>"General Topology"</u> Addison Wesley publishing company Reading (1970).

Connected ideal space and continuous function typesMaisaa Z. Salman

الخلاصة