دراسة أطياف الإشعة تحت الحمراء وتحت الحمراء المتوسطة والمرئية وفوق البنفسجية لجزيئة كلوريد النحاس

Copper chloride CuCl\textsubscript{2} . 2H\textsubscript{2}O

الأعمال

خالد حسن عبد المعموري
الجامعة المستنصرية / كلية التربية / قسم الفيزياء

الخلاصة

تمت الدراسة الطيفية لجزيئة كلوريد النحاس (CuCl\textsubscript{2} . 2H\textsubscript{2}O) في مدى الطيف الموجي (40000 - 410) \textit{cm}-1 (101 - 40000) ومنها الاشعة تحت الحمراء المتوسطة، وتم تشخيص حزم الاستجابة لالتزامات الإشعاع الأساسية ضمن هذه المنطقة إلى مط الأواخر المتماثلة ومت الأواصر غير المتماثلة، وهي وحدها وحدها الاتجاهات غير المتماثلة، وأنجح الزوايا المتماثلة للإشعاعات المتماثلة

وجميع هذه الحزم متنوعة في مجال الإشاعة تحت الحمراء ورامان وذلك بسبب التناظر الضعيف لهذا الجزء.

وتم تشخيص حزم الطيف الشوكة وحزم المجموع وحزم الفروق للجزيئة كلوريد النحاس (CuCl\textsubscript{2} . 2H\textsubscript{2}O) عند الاعدادات الموجية الإثارة:

3344, 2420, 2370, 1602.85, 970, 680, 555.50, 530, 500, 2990, 2419, 18868, 18001, 14705, 10309, 9009, 6238, 4132, 4099, 20000 نانوميتر على التوالي.

تم دراسة وتشخيص الحزم في مدى الاشعة المرئية وفوق البنفسجية لهذه الجزئية، وفرضت حزم الاتهامات الإلكترونية عند الطول الموجي (46019) نانوميتر (217.3) سم-1 إلى الأنتقال الإلكتروني (\textit{n} \rightarrow \pi^\text{+}) والطول الموجي (329.8) نانوميتر (30395) سم-1 إلى الانتقال الإلكتروني (\textit{n} \rightarrow \pi^\text{+}).
المقدمة

جزئية كلوريد النحاس (CuCl$_2$. 2H$_2$O) Copper chloride

عضوية متعددة الذرات خطية إذ ينتمي الجزء الثلاثي الذرات إلى المجموعة النقطية (Internal (D$_{∞h}$) (point group) بالعلاقة (5)) ومية اربعه اهتزازات لمجموعة التناظر كون (Vibrational Modes)

(5) Fتكون اهتزازات موضعية اهتزاز (symmetry bonds)

Vibrational Stretching Anti – symmetry $U_1 (\Sigma^+)$* واهتزاز مط غير متناصر $U_3 (\Sigma^+)$** (Vibrational bending bonds)

بالاهتزاز (pi) $U_2 (\pi)$ ثنائي الأحلاف (double degenerate) [1-5]

فأذا رافق الاهتزاز تغير في عزم ثنائي القطب للجزئية تكون الاهتزازات نشطة في

أو اتجاه الاستقطابية (polarizability tenser)

وانذا رافق الاهتزاز تغير في قيمة في طيف رامان .

ففي الجزيئات التي لها مركز تماثل تكون اهتزازاتها نشطة عند طيف الاشعة تحت الحمراء وغير نشطة في طيف رامان والعكس بالعكس للترددات الاساسية [6-5]

Copper chloride (CuCl$_2$. 2H$_2$O)

في جزيئة كلوريد النحاس الخطية التي ينتمي نشاط اهتزازاتها إلى المجموعة النقطية لا يمتلك مركز تماثل لذا تكون جميع اهتزازات مط الأصورة (D$_{∞h}$) (point group)

المتناصر ومط الأصورة غير المتناصر وثني الزوايا المتناصر تكون جميعها نشطة في طيفي الاشعة تحت الحمراء ورامان [9-6]

ان طيف الاشعة تحت الحمراء وطيف رامان يكونان تقنيتين متكاملتين لدراسة الاهتزازية للجزئية [12-9]

* نشاط الحزم في طيف رامان .

** نشاط الحزم في منطقة الاشعة تحت الحمراء .
In this study, a study of the infrared (IR) and visible (UV) spectra of copper chloride \(\text{CuCl}_2 \cdot 2\text{H}_2\text{O}\) was conducted. The research was focused on examining the vibrations in the molecule and the electronic transitions.

The copper chloride \(\text{CuCl}_2 \cdot 2\text{H}_2\text{O}\) used in this study was purchased from BDH with a purity of 99.9%. The samples were pressed into discs using KBr.

The FT-IR spectra were obtained using a Shimadzu FT-IR 9001 spectrophotometer. The UV-visible spectra were recorded using a VARIAN Cary 100 conc spectrophotometer.
الدِّرَاسَة ِإِلّاِ فيَاحْضِرُانِ 덧ٌّ وَٰذٌّ لِلدِّرَاسَةِ مِنَ الْإِنْتَقَالَاتِ الْإِهْتِزَازِيَةِ وَالْإِلْكَتَرُوُنِيَّةِ ۚ ۖ أَمْ. خَالِد حَسَن عِبَد الْمُعَمَّورِيَّ

بعد اذابة كليلي بالماء الوردي، تم الحصول على محلل رائق للمركب الحامضي لدراسة طيف الانكسار لمحلل المركب في منطقة الانتقالات الاهتزازية والالكترونية. تم استخدام ملح (KBr) في عملية الحصول على القرص المضغوط لامتصاصه خاصية تسمية عالية وكذلك لأنه لا يؤثر على قياسات الأشعة تحت الحمراء للمركب لأنه لا يملأ طيفاً في منطقة تحت الحمراء [15, 14].

النتائج والمناقشة

في الدراسات السابقة لمدى الحزم الأساسية لقياس طيف جزيئة كلوريد النحاس (CuCl2 . 2H2O) Copper chloride والجزيئات المماثلة، فقد أظهر طيف مطلق الأواسس المتماثل (U1، U2) ومط الأشرة غير المتماثلة (U3) وكلاهما غير منحل tweak من U2(π) والزوايا المتمثالتين (U1، π) Singly-degenerate وdoubly-degenerate [1, 3-1].

ان طيف الأشعة تحت الحمراء قد أظهر كل من الحزم الأساسية لجزيئة كلوريد النحاس (CuCl2 . 2H2O) Copper chloride والجدول (1) يوضح هذا الطيف، إذ أظهر الحزم التي عند الإعداد الموجية الآتية:

\[\lambda = 3344, 2420, 2370, 1602.85, 1110, 970, 680, 555.5, 530, 500, 1100, 850, 680, 555.5, 530, 500 \] (نانومتر)

والتي يقابلها الأطوال الموجية الآتية:

\[500, 4132, 2420, 2370, 1602.85, 1110, 970, 680, 555.5, 530, 500 \] (نانومتر)

على الترتيب والتي قسمت إلى الانتقالات الاهتزازية الآتية:

(1) U1 + U2 + 2U3، U3 + 3U2، 3U1 + U2

والشكل (1) والجدول (1) يبينان الحزم الاهتزازية الأساسية والجمعية (CuCl2 . 2H2O) Copper chloride. وحجم الفروع لجزيئة كلوريد النحاس والوقيقة، وحجم الفروع لجزيئة كلوريد النحاس.

الحملة التي عند (3344) سم-1 فأننا نجد عند مط الأواسس لجزيئة الماء

اما الحزمتين اللتان تقعان عند الطولين الموجيين (329, 217.3) نانومتر، والذين يقابلهما الإعداد الموجية (30395, 46019) سم-1 على التوالي فيعودان إلى الانقلابين الإلكترونيين
CuCl₂·2H₂O

Copper chloride

شكل (1) طيف الأشعة تحت الحمراء تحت الحمراء المتوسطة والذي يبين الحزم الاهتزازية الأساسية والتمييزية والوقتية وحزم الفروق لجزء كلوريد النحاس (CuCl₂·2H₂O) chloride

تم تحديد نوع التماثل (symmetry type) (species) (1) والملحق رقم (2) على التوالي لانهما متوازيتان [16-1] [1].

٢١،١٣،١٧،٢١

علي التوالي.
Copper chloride \(\text{CuCl}_2 \cdot 2\text{H}_2\text{O} \)

Shape (2) between charged electron transitions of copper chloride (CuCl\(_2\) \cdot 2\text{H}_2\text{O}) chloride
Copper chloride \(\text{CuCl}_2 \cdot 2\text{H}_2\text{O} \)

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Symmetry type species</th>
<th>Wave length (\text{nm})</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>(\Sigma^+)</td>
<td>15385</td>
<td>-</td>
</tr>
<tr>
<td>U2</td>
<td>(\pi)</td>
<td>20833</td>
<td>-</td>
</tr>
<tr>
<td>U3</td>
<td>(\Sigma^+)</td>
<td>8992</td>
<td>-</td>
</tr>
<tr>
<td>3U1 - 3U2</td>
<td>(\pi + \Phi)</td>
<td>20000</td>
<td>IR+R</td>
</tr>
<tr>
<td>6U1 - 7U2</td>
<td>(2\pi + 2\Phi)</td>
<td>18868</td>
<td>IR+R</td>
</tr>
<tr>
<td>6U1 - 7U2</td>
<td>(2\pi + 2\Phi)</td>
<td>18001</td>
<td>IR+R</td>
</tr>
<tr>
<td>4U1 - 402</td>
<td>(\Sigma^+ + \Delta + \Gamma)</td>
<td>14705</td>
<td>IR+R</td>
</tr>
<tr>
<td>2U2</td>
<td>(\Sigma^+ + \Delta)</td>
<td>10309</td>
<td>IR+R</td>
</tr>
<tr>
<td>U3</td>
<td>(\Sigma^+)</td>
<td>9009</td>
<td>IR+R</td>
</tr>
<tr>
<td>4U1 - 202</td>
<td>(\Sigma^+ + \Delta)</td>
<td>6238</td>
<td>IR+R</td>
</tr>
<tr>
<td>3U1 + U2</td>
<td>(\Sigma^+ + 2\Delta + 2\Phi + \Gamma)</td>
<td>4219</td>
<td>IR+R</td>
</tr>
<tr>
<td>U3 + 3U2</td>
<td>(\Sigma^+ + \Delta)</td>
<td>4132</td>
<td>IR+R</td>
</tr>
<tr>
<td>U1 + U2 + 2U3</td>
<td>(\pi)</td>
<td>2990</td>
<td>IR+R</td>
</tr>
</tbody>
</table>

IR: الحزم النشطة في طيف الإشعة تحت الحمراء
R: الحزم النشطة في طيف رامان

Copper chloride \(\text{CuCl}_2 \cdot 2\text{H}_2\text{O} \)

Table 1

<table>
<thead>
<tr>
<th>Wave length (nm)</th>
<th>Wave number (\text{cm}^{-1})</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>217.3</td>
<td>46019</td>
<td>(n \rightarrow 6^*)</td>
</tr>
<tr>
<td>329</td>
<td>30395</td>
<td>(n \rightarrow \pi^*)</td>
</tr>
</tbody>
</table>
الاستنتاجات

تتم دراسة وتشخيص الحزم العادية لجزيئه كلوريد النحاس (CuCl₂ . 2H₂O) في منطقة الإشعة تحت الحمراء وتحت الحمراء المتوسطة والمرئية ووقوف البنفسجية لجزيئة CuCl₂ . 2H₂O، وقحم البنفسجية، إذ أثبتت الدراسة أن الاهتزازات الأساسية للجزيئة (ν(+)U₁، ν(π)U₂(π)، ν(π)U₃(π⁺)) كانت نشطة في طيف الإشعة تحت الحمراء ورابان مما يعكس التناظر الضعيف لهذا الجزيء (16-21).

أذ يمتلك الجزيء مستوى تماثل على المحور الأساسي (D₃h). عدد لا نهائي من المستوى الواقع فيها المحور الأساسي السابق، ويوجد هناك عدد لا نهائي من مجاميع التماثل المنحلة، إذ من الممكن قياسها بوساطة طيف درجات الحرارة الواطئة، وكذلك هناك خطوط طيفية جديدة في منطقة اهتزازات الانحناء الأساسية (ν(π)U₂(π، 19، 20)).

وذلك تم تشخيص جميع الحزم الأساسية والوقواقية والتجميعية وحزمة الفروق، وتم كذلك تشخيص حزم الانتقالات الإلكترونية التي تقع عند الطولين الموجين (217.3، 329 نانومتر) والتي يقابلها العددان الموجيان (19، 30395) سم⁻¹ على الترتيب، وهما يعودان إلى الانتقالات الإلكترونية (n→π*، n→6*).

وبذلك فإن لجزئية كلوريد النحاس (CuCl₂ . 2H₂O) Copper chloride وقحم البنفسجية الفرزاغية والقريبة منطقتي الإشعة المرئية ووقوف البنفسجية الفرزاغية والقريبة.
References:
(10) D. Krishnamor , Raman research institute ,Bangalore ,Memoir No.84, Bangalore 6 , (1956).
(19) Peter Larkin " Infrared and Raman spectroscopy principles and
Spectral instruction " Elsevier , 225 Wyman street , Waltham , Ma 02451 , USA (2011).

(21) Thesis , Maryam Samir abed AL-Sattar " study the absorption spectra of some Inorganic molecules in UV-vis-IR range of spectrum , College of education –AlMustansiryah University (2014).
ملحق رقم (1)

<table>
<thead>
<tr>
<th>Point group</th>
<th>Vibrational level</th>
<th>Resultant states</th>
</tr>
</thead>
<tbody>
<tr>
<td>D<sub>∞h</sub></td>
<td>$\Sigma^+ \cdot \pi$</td>
<td>π</td>
</tr>
<tr>
<td></td>
<td>$\Sigma^+ \cdot \Delta$</td>
<td>Δ</td>
</tr>
<tr>
<td></td>
<td>$\pi \cdot \pi$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Delta \cdot \pi$</td>
<td>$\pi + \Phi$</td>
</tr>
<tr>
<td></td>
<td>$\pi \cdot \Phi$</td>
<td>$\Delta + \Gamma$</td>
</tr>
<tr>
<td></td>
<td>$\Sigma^- \cdot \pi$</td>
<td>π</td>
</tr>
</tbody>
</table>

ملحق رقم (2)

<table>
<thead>
<tr>
<th>Point group</th>
<th>Vibrational level</th>
<th>Resultant states</th>
</tr>
</thead>
<tbody>
<tr>
<td>D<sub>∞h</sub></td>
<td>(π)<sup>2</sup></td>
<td>$\Sigma^+ + \Delta$</td>
</tr>
<tr>
<td></td>
<td>(π)<sup>3</sup></td>
<td>$\pi + \Phi$</td>
</tr>
<tr>
<td></td>
<td>(π)<sup>4</sup></td>
<td>$\Sigma^+ + \Delta + \Gamma$</td>
</tr>
<tr>
<td></td>
<td>(π)<sup>5</sup></td>
<td>$\pi + \Phi + \pi$</td>
</tr>
<tr>
<td></td>
<td>(π)<sup>6</sup></td>
<td>$\Sigma^+ + \Delta + \Gamma + I$</td>
</tr>
</tbody>
</table>
Infrared, Mid infrared and UV-Visible spectra study Copper chloride \(\text{CuCl}_2 \cdot 2\text{H}_2\text{O} \) molecule

Dr. Khalid Hassan Abed
Assistant prof. phys. Department collage of education
AL-Mustansiriyah University

Abstract

IR, MIR, UV – Visible spectra have been studied for Copper chloride molecule \((\text{CuCl}_2 \cdot 2\text{H}_2\text{O})\) compound. In wide range spectra \((40000 – 410) \text{ cm}^{-1}\) specially in MIR range. Assignment were achieved for the fundamental vibrational bands of \((\text{CuCl}_2 \cdot 2\text{H}_2\text{O})\) to symmetry stretching \(U_1 (\Sigma^+)\), Anti – symmetry stretching \(U_3 (\Sigma^+)\), these bands are non-degenerate, and the bending band is \(U_2 (\pi)\) is doubly degenerate thought they have activity in IR and Raman, which explain the weakness in symmetry of this molecule, the fundamental bands for the molecule are centered at the following wave numbers

\[
(500, 530, 555.5, 680, 970, 1110, 1602.85, 2370, 2420, 3344) \text{ cm}^{-1}
\]

which are corresponding to wave lengths

\[
(20000, 18868, 18001, 14705, 10309, 9009, 6238, 4219, 4132, 2990) \text{ nm}
\]

The UV and visible spectra of the shows bands centered at \((217.3, 329) \text{ nm}\), corresponding to \((46019, 30395) \text{ cm}^{-1}\) due to the electronic transitions \((n \rightarrow 6^*)\), \((n \rightarrow \pi^*)\) respectively.