Synthesis of Some New Schiff Bases and Reaction with Urea & Thiourea Derivatives from 2-Amino -1,3,4-thiadiazole-5-thiol

Sanaa Abdul-Sahib Abdul-Kareem Al-Mansori Chemistry Dept. College of Science for Women University of Baghdad

Abstract:

In this paper new Schiff bases and tetrazole derivatives of 2-Amino-1,3,4-thiadiazole- 5-thiol have been prepared.2-Amino-1,3,4-thiadiazole-5thiol was prepared by the reaction of thiosemicarbazide with carbon disulfide in alcoholic sodium carbonate solution .The new Schiff bases derivatives [2_5] were prepared by condensation of aldehyde group with 2-Amino-1,3,4-thiadiazole-5-thiol (P-Nitrobenzeldehyde ,M-Nitrobenzeldehyde, P-Hydroxybenzeldehyde, , 4-Hydroxy 3-Methoxy benzeldehyde) . The resulting Shiffbase were

Reaction with acetic anhydride [6-9] and this derivatives reaction with urea and thiourea intetrahydrofuran{10-17}.

All new synthesized derivatives were identified by their melting points, and FT-IR,U.V spectra. Some products were identified in elemental analysis and Chledal analysis .They have long been known to possess hypnotics activities and it is hoped that our compounds would do so.

Introduction

Thiadiazole represents a group of heterocyclic whose derivative are very important in industrial, medicine, and agriculture (1,2). These compounds contain a five member diunsaturated ring structure consisting of two nitrogen atoms and one sulfur atom.

Thiadiazole present almost in four parent compounds as below:-

[1,3,4]Thiadiazole [1,2,5]Thiadiazole [1,2,4]Thiadiazole [1,2,3]Thiadiazole Fig(1-1)

المجلد 22- العدد 94- 2016	- 33 -	مبلة كلية التربية الأساسية
---------------------------	--------	----------------------------

Synthesis of Some New Schiff Bases and Reaction with Urea & Thiourea Derivatives from 2-Amino -1,3,4-thiadiazole-5-thiol Sanaa Abdul-Sahib Abdul-Kareem Al-Mansori

These compounds have a considerable published work and best intensive study (3,4).

AMT is capable of existing in four tautomeric forms and exist predominately in thione form (II), as demonstrated by spectroscopic study.

The chemical shift of the C-2 (13C-NMR) represents the chemical shift characteristic of carbon atom of a thione group, and also in the HNMR spectrum, NH can be observed as NH of thioamide (13.2-14 ppm) instead of thiol (SH) group (2.0 - 4.0 ppm).(5,6,7)

The structure of AMT can also be represented by zwitter ionic form such as (V) since the reviews of hydrogen bonding showed the capabilities of sulfur to exist in zwitter ionic tautomeric forms(8) (VI).

In the literature (5,6,7), 2- amino -5- mercapto -1,3,4- thiadizole (AMT) possesses other chemical names such as 5-amino-1,3,4- thiadiazol-2-thiol (I) and 5- amino-3H-1,3,4- thiadiazole-2- thione (II), with molecular formula of C2H3N3S2.

Schiff bases are prepared by the acid-catalyzed condensation of primary amines, with aldehydes. These derivatives are well known to have a wide range of biological activities such as antiviral, antibacterial, antifungal, anticonvulsant and anticancer [9]. Urea was the first synthesized organic compound, it was artificially synthesized in synthetic laboratory by Wohler

ساسية - 34 - المجلد 22- العدد 94- 2016	مجلة كاية التربية الأ
--	-----------------------

in 1828. Urea is synthesized in the body of many organisms as part of the urea cycle. Urea production occurs in the

liver and found in the urine of mammals, dissolved in blood, plants, birds, yeast and many microorganisms.[10]

Experimental Chemicals

The following chemicals have been used in this work according to their manufactures .

Table(1): Chemicals and their	manufacture
Chemicals	Supplied
Thiosemicarbazide	Fluka
Sodium carbonate(anhydrous)	BDH
Carbon disulfide	Fluka
Conc.Hydrochloric acid	Merck
Acetic anhydride	BDH
Sodium hydroxide	BDH
Ethanol(absolute)	BDH
Glacial acetic acid	BDH
P-Nitrobenzeldehyde	Fluka
Urea	BDH
Thiourea	BDH
M- Nitrobenzeldehyde	Fluka
4-Hydroxy 3- Methoxy	Merck
Tatrahydrofuran	BDH

Table(1) : Chemicals and their manufactures

General Notes

All solvents used were redistilled. Thin layer chromatography were performed on asilica-gel SG - 40 (Merck). Spots were visualized with iodine vapour. The melting points were determined with Stuart Melting Point Apparatus. The FT-IR spectra were recorded on FT - IR - 8000S, Schimadzu-Spectrophotometer and using KBr discs.Elemental analysis measured on EA7708 University of Kufa elemental analyzer.

Preparation Methods:

1. Synthesis of 2-amino-1,3,4-thiadiazole-5-thiol (1)

A solution of thiosemicarbazide (2g, 0.021 mol) and any sodium carbonate (1.059 g, 0.01 mol) in ethanol was placed in 250cm 3round bottomed flask fitted with reflux condenser. Carbon disulfide (4.712 g, 0.02 mol) was then added and the mixture was stirred for 1h. at room temp. after being refluxed for 7h, the reaction mixture was then allowed to cool and most of the solvent removed via evaporization under reduced pressure by rotary evaporator. Water (60cm3) was added to the residue and the mixture

ساسية - 35 - المجلد 22- العدد 94- 2016	مجلة كلية التربية الأ
--	-----------------------

acidified carefully by conc hydrochloric acid. The crude pale yellow residue was filtered and washed with distil. Cold water , then recrystallized from ethanol to give pale greenish-yellow needs of 2-amino- 5-mercapto – 1,3,4 - thiodiazole (1.6 g . 80%) m.p. 230 - 232C°

General Synthesis of compound 2-5

An ethanolic solution (20 cm3) of aldehyde (0.01 mol) catalyzed by a few drops of acetic acid was stirred in a round bottomed flask equipped with reflux condenser compound (No.1) (0.01mol) was added and reaction mixture was refluxed for 7h, the solvent was reduced by evaporation and the reaction mixture was filtered then recrystallized from ethanol to get crystals of the desired compound.

No. of compound	Carbonyl compound / weight	Structure product	Color product	ylide %	MP C°
2	P- Nitrobenzeldehyde (1.87g , 0.01mol)	5-(4-nitrobenzylideneamino)- 1,3,4-thiadiazole-2-thiol (S21) N SH SH SH SH	Dark yellow O ₂	1.6g , 85%	135-137C°
3	M- Nitrobenzeldehyde (1.87g , 0.01mol)	5-(3-nitrobenzylideneamino)- 1,3,4-thiadiazole-2-thiol (S22) SH	O2 Light yellow	1.68g, 89%	118-120 C°
4	P- Hydroxybenzeldehy de (1.22g , 0.01mol)	4-((5-mercapto-1,3,4-thiadiazol-2- ylimino)methyl)phenol (S23) HS S N=C H	Yellow —OH	1g, 81%	88-90 C°
5	4- Hydroxy-3- Methoxy benzeldehyde (1.52g, 0.01mol)	4-((5-mercapto-1,3,4-thiadiazol-2- ylimino)methyl)-2-methoxyphenol (S26) SH	.OC Đ ȝrk yellow —OH	1.2g, 78%	184-186 C°

The following table No.(2) shows the physical properties and % ylede

6. Synthesis of 1-(5-(4-nitrobenzylideneamino)-2-thioxo-1,3,4thiadiazol-3(2H)-yl)ethanone (S59)

A mixture compound No. (2) (2.66g , 0.01mol) with acetic anhydride (1.00g, 0.01mol) in THF (20cm3) was refluxed with stirring for 3h. Then the reaction mixture was concentrated by evaporation part of the solvent and cooled to room temperature filtered of and recrystallization from ethanol gave yellow crystals of compound (No. 59) 1.5 g ,59% , M.P.86 - 88 C°.

7. Synthesis of 1-(5-(3-nitrobenzylideneamino)-2-thioxo-1,3,4thiadiazol-3(2H)-yl)ethanone (S60)

A mixture compound No. (3) (2.66g, 0.01mol) with acetic anhydride (1.00g, 0.01mol) in THF (20cm3) was refluxed with stirring for 3h. Then the reaction mixture was concentrated by evaporation part of the solvent and cooled to room temperature filtered of and recrystallization from ethanol gave brown crystals of compound (No. 60) 1.6g ,60% , M.P. 180C°.

8. Synthesis of 1-(5-(4-hydroxybenzylideneamino)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)ethanone (S61)

A mixture compound No. (4) (2.73g, 0.01mol) with acetic anhydride (1.00g, 0.01mol) in THF (20cm3) was refluxed with stirring for 3h. Then the reaction mixture was concentrated by evaporation part of the solvent and cooled to room temperature filtered of and recrystallization from ethanol gave a yellow crystals of compound (No. 61) 1.65g , 61% , M.P. 110-112C°.

المجلد 22- العدد 94- 2016

9. Synthesis of 1-(5-(4-hydroxy-3-methoxybenzylideneamino)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)ethanone (S62)

A mixture compound No. (5) (2.67g, 0.01mol) with acetic anhydride (1.00g, 0.01mol) in THF (20cm3) was refluxed with stirring for 3h. Then the reaction mixture was concentrated by evaporation part of the solvent and cooled to room temperature filtered of and recrystallization from ethanol gave a brown crystals of compound (No. 62) 1.0 g , 75% , M.P. 120-122C°.

General Synthesis of compound 10 -17

A mixture compound (0.01mol) with urea 0.01mol and thiourea 0.01mol in THF (20cm3) was refluxed with stirring for 3h. Then the reaction mixture was concentrated by evaporation part of the solvent and cooled to room temperature filtered of and recrystallization from ethanol gave crystals of desired compound.

No.	Starting material /Weight	Urea weight	Thiourea weight	Structure product	Color product	Solvent recrystalli zation	$MP \ C^\circ$
10	6 3.08g – 0.01mol	6.0g 0.01mol		5-methyl-2-(4- nitrobenzylideneamino)-7H- [1,3,4]thiadiazolo[3,2- a][1,3,5]triazin-7-one (S63) CH_3 N N N N N N N N N N	Light Yellow	Ethanol	118- 120
11	6 3.08g – 0.01mol		7.6g 0.01mol	5-methyl-2-(4- nitrobenzylideneamino)-7H- [1,3,4]thiadiazolo[3,2- a][1,3,5]triazine-7-thione(S64)	White	Ethanol	125
12	7 3.08g – 0.01mol	6.0g 0.01mol		5-methyl-2-(3- nitrobenzylideneamino)-7H- [1,3,4]thiadiazolo[3,2- a][1,3,5]triazin-7-one(S65)	Brown	Ethanol	108- 110

The following table No.(3) shows the physical properties and % ylede

المجلد 22- العدد 94- 2016

مجلة كلية التربية الأساسية

Synthesis of	Some	New	Schiff	Bases	and	Reaction	with	Urea	&	Thiourea
Derivatives	from 2	-Ami	no -1,3,	4-thiad	diazo	le-5-thiol				•••••
				Sanaa	Abd	ul-Sahih A	hdul_]	Kareen	η Δ	1-Mansori

13	7 3.08g – 0.01mol		7.6g 0.01mol	5-methyl-2-(3- nitrobenzylideneamino)-7H- [1,3,4]thiadiazolo[3,2- a][1,3,5]triazine-7-thione(S66)	Light Brown	Ethanol	170- 172
14	8 2.79g – 0.01mol	6.0g 0.01mol		2-(4-hydroxybenzylideneamino)-5- methyl-7H-[1,3,4]thiadiazolo[3,2- a][1,3,5]triazin-7-one(S67)	Light yellow	Ethanol	98- 100
15	8 2.79g – 0.01mol		7.6g 0.01mol	2-(4-hydroxybenzylideneamino)-5- methyl-7H-[1,3,4]thiadiazolo[3,2- a][1,3,5]triazine-7-thione(S68)	Yellow	Ethanol	124- 126
16	9 3.09g – 0.01mol	6.0g 0.01mol		2-(4-hydroxy-3- methoxybenzylideneamino)-5- methyl-7H-[1,3,4]thiadiazolo[3,2- a][1,3,5]triazin-7-one(S69)	Light Green	Ethanol	120- 122
17	9 3.09g – 0.01mol		7.6g 0.01mol	2-(4-hydroxy-3- methoxybenzylideneamino)-5- methyl-7H-[1,3,4]thiadiazolo[3,2- a][1,3,5]triazine-7-thione(S70)	Light yellow	Ethanol	158- 160

Results and Discussion

Schiff bases can be prepared via a condensation reaction between primary amines with aldehydes, therefore we prepared 2-Amino-1,3,4-thiadiazole-5-thiol, by the reaction of thiosemicarbazide with carbon disulfide in alcoholic sodium carbonate solution. The new Schiff bases derivatives [2-5] were prepared by condensation of aldehyde group with 2-Amino-1,3,4-thiadiazole-5-thiol, P-Nitrobenzeldehyde ,M-Nitrobenzeldehyde, P-Hydroxybenzeldehyde, , 4-Hydroxy 3-Methoxy benzeldehyde).

Compound [1] showed identical melting point also characterized with FT-IR spectrum which showed the following characteristic bands: the two bands at 3398cm-1 and 3278cm-1 were due to asymmetric and symmetric stretching vibrations of (-NH2) group respectively an absorption band at 3089cm-1 was due to the (-NH) stretching vibration (tautomeric form). The absorption bands at 2916cm-1 and 2773cm-1 were attributable to the intramolecularly hydrogen bonded of (-NH) group The (-SH) stretching band found as very weak shoulder at 2600cm-1. A band at 1600cm-1 was due to the (C=N) stretching vibration of the thiadiazole ring moiety. The sharp bands at 1535cm-1 and 1496cm-1 are due to the (-NH) bending and (C-N) stretching vibrations respectively. Also, the absorption bands at (1226, 1172)cm-1 are due to the presence of (=N-N-C-) cyclic grouping (28). Moreover, the absorption band at 1070cm-1 for the (C=S) group stretching vibration gives evidence that compound [1] can exist in two tautomeric forms, thiol form and thion form Beside this, the band at 750cm-1due to (C-S) bond stretching is good evidence for the structure given to the product.

Synthesis of Some New Schiff Bases and Reaction with Urea & Thiourea Derivatives from 2-Amino -1,3,4-thiadiazole-5-thiol Sanaa Abdul-Sahib Abdul-Kareem Al-Mansori

	FT.IR & U.V spectrum of compound [2-5] showing in the table (4)											
										Pe	eak	
No. of com.	Structure	C=N cm-1	N-H	C=C	C-H cm-1 Aram.	C-H cm-1 Aliph.	S-H cm-1	C-S cm-1	Other	λmax nm	Abs	
2		₂ 1517	3415	1442	2968	2773	2364	661- 617	NO2 1442- 1300	218 249- 288- 370	3.641- 0.721- 1.450- 0.210	
3		, ^{NO₂} 1703- 1614	3263	1481	3082	2059	2362	725- 690	NO2- 1481- 1317	210- 255- 391	3.54- 0.762- 0.213	
4		–04 1643	3251	1562	3178	2607	2808	667- 664	OH- 3410	210- 260- 340	2.44- 0.75- 0.312	
5		а н 1700- 1610	3109 - 3089	1587 - 1554	3000	2775	2790	750- 640	OH- 3450	215- 250- 295- 350	2.16- 065- 0.45- 0.27	

Chledal analysis N%ForComp.3,Caicd.21,05%.Found;21,49%.

Scheme (2)

FT-IR spectrum of Schiff bases derivatives of compounds [2-5] showed appearance of absorption bands due to the exocyclic imine group stretching vibration v(C=N) at (1517cm-1703cm-1,1670cm-1, 1700cm-) respectively.

6. Synthesis of 1-(5-(4-nitrobenzylideneamino)-2-thioxo-1,3,4-thiadiazol-3(2H)-yl)ethanone.

On following:

- The reaction of compound No.(2) with 1mol acetic anhydride to give the compound [6]
- The reaction of compound No.(3) with 1mol acetic anhydride to give the compound [7]
- The reaction of compound No.(4) with 1mol acetic anhydride to give the compound [8]
- The reaction of compound No.(5) with 1mol acetic anhydride to give the compound [9].
- The mechanistic path of this reaction is discussion as in scheme (59)

FT.IR & U.V spectrum of compound [59- 62] showing in the table (5)

No.		C-N	C-0	N-N	C-C	C-5	СН	С-Н	C-S		Peak	
of com.	Structure	str.	str.	Str.	str.	cm-1	cm-1 Alip	cm-1 Arm.	c-3 cm-1	Other	λmax nm	Abs
6		1770 102	1740	1496	1404	1271	2652 2526	2987	675	C-NO ₂ 1200	234- 237	1.5- 0.36
7		1654	1597	1531 1504	1442	1273 1238	2939 2839	3008 2970	675	C-NO ₂ 1217	250- 254	1.5- 0.2
8		_ _{-0H} 1685	1637	1585	1404	1271	2998	2869	675	C-OH 3200	266 275	2.2 0.2
9		^{:н₃} 1762	1654	1593 1504	1384	1238	2873 2839	3006 2966	675	C-OH 3450	288- 295	2.5 2.5

Anai.Calcd.for ,8, C₁₁H₅N₂O₂S₂: C,50,57;H,1,91;N,10,72%;Found;C,50,00;H,2,05;N,10,06

مجلة كلية التربية الأساسية - 42 - العدد 94- 2016 مجلة كلية التربية الأساسية

10 - Synthesis of 5-methyl-2-(4-nitrobenzylideneamino)-7H-[1,3,4]thiadiazolo[3,2-a][1,3,5]triazin-7-one.

On following:

- The reaction of compound No.(6) with 1mol urea to give the compound [10]
- The reaction of compound No.(6) with 1mol thiourea to give the compound [11]
- The reaction of compound No.(7) with 1mol urea to give the compound [12]
- The reaction of compound No.(7) with 1mol thiourea to give the compound [13].
- The reaction of compound No.(8) with 1mol urea to give the compound [14].
- The reaction of compound No.(8) with 1mol thiourea to give the compound [15].
- The reaction of compound No.(9) with 1mol urea to give the compound [16].
- The reaction of compound No.(9) with 1mol thiourea to give the compound [17].
- The mechanistic path of this reaction is discussion as in scheme (4)

Synthesis of Some New Schiff Bases and Reaction with Urea & Thiourea Derivatives from 2-Amino -1,3,4-thiadiazole-5-thiol Sanaa Abdul-Sahib Abdul-Kareem Al-Mansori

Synthesis of Some New Schiff Bases and Reaction with Urea & Thiourea Derivatives from 2-Amino -1,3,4-thiadiazole-5-thiol Sanaa Abdul-Sahib Abdul-Kareem Al-Mansori

15	1618	1550	1473	1411	1300	2968	3172 3062	730 630	C-OH 3375 3271	244- 348	3.2 1.2
16	1676	1623 1604	1465	1400	1300	2800	3222	768	C-OH 3436 3342	254 279	3.185 2.001
17	1618	1550	1473	1413	1300	2677	3176 3095 3026	730	C-OH 3375 3278	233- 298- 309- 351	3.58 3.273 .2.08 0.8

Anai.Calcd.for ,14, $C_{12}H_9N_5O_2S_1$:

C,50,17;H,3, 13;N,24,39%;Found;C,50,00;H,2,98;N,25,00

References:

- 1- I. L. Finar., "Organic Chemistry" v.(1,2), Longman Lim., fifth ed., p. 623, 1975.
- 2- T. L. Gilchrist, "Heterocyclic Chemistry", Pitman Ltd, first ed., p. 223, 1985.
- 3- A. R. Kataritzky and A.J. Boulton, " Advances in Heterocyclic Chemistry", v.7., Academic Press, New York 52, 1966.
- 4- R. C. Elderfield," Heterocyclic Compounds", John Wiley & Sons, New York, v.7., p. 384, 1971,
- 5- P. C. Guha, J. Am. Chem. Soc., 44, 1510, 1922.
- 6- G.N. Kim, "Heterocyclic chem., 30, 397, 1993.
- 7- P. O. Luoni., V. Leonel, P. O. Lopez, J.Chil. Chem., 52, No. 1, 2007.
- 8- S. Patai, "The chemistry of thiol group", v.1, John Wiley & Sons, p. 119, 1974.
- 9- Chalina, E.G., L. Chakarova, Eur. J. Med. Chem., , 1998, 33(12): 975-983.

الخلاصة :

تم في هذه البحث تحضير قواعد شيف جديدة و المشتقات تترازول من 2 – امينو،4،3،1 – ثايادايازول –5-ثايول من ثايادايازول –5-ثايول من تفاعل ثايوسيمي كاربازيد مع ثنائي كبريتد الكاربون في محلول كحولي من كاربونات الصوديوم قواعد شف المحضرة من(2-5) بواسطة التكثيف محلول كحولي من كاربونات الصوديوم قواعد شف المحضرة من(2-5) بواسطة التكثيف مجموعة مع 2 – امينو،4،3،4 – ثايادايازول –5 –ثايول (بارانتروبنز الديهيد ، محلول كحولي من كاربونات الصوديوم قواعد شف المحضرة من(2-5) بواسطة التكثيف محلول كحولي من كاربونات الصوديوم قواعد شف المحضرة من(2-5) بواسطة التكثيف محلول كحولي من كاربونات الصوديوم قواعد شف المحضرة من(2-5) بواسطة التكثيف ميتانتروبنز الديهيد ، محموعة مع 2 – امينو،4،3،4 – ثايادايازول –5 –ثايول (بارانتروبنز الديهيد ، محموعة مع 2 – مينوكسي الدهايد بنز الديهيد ، ،4_هيدروكسي-3- ميثوكسي ميتانتروبنز الديهيد ، المنتقات الناتجة تم تفاعلها مع انهدريد الخليك (6-9) المشتقات الناتجه تدخل منز الديهيد) مع اليوريا و الثايويوريا في تتراهيدروفيوران المشتقات الناتجة تحلي المنتقات الناتجه تدخل تفاعل مع اليوريا و الثايويوريا في تتراهيدروفيوران المشتقات الناتجة تحلي الأشعة تحت الحمراء ومطيافيه الأشعة تم تفاعل ما يوقع النفسجية بعض المشتقات الناتجة عن طريق مطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تم تمتخيص جميع المشتقات الناتجة عن طريق مطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تم تشخيص جميع المشتقات الناتجة عن طريق مطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تم تشخيص جمي المشتقات الناتجة عن طريق مطيافيه الأشعة تحت الحمراء ومطيافيه الأشعة تحت الحمراء ومليافيه الأشعة المنوم النوب المراك مروب المراك مولي المولية ما