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Abstract
In this paper we consider the relative iteration of entire special
monogenic functions and we studied the comparative growth of the
maximum term of iterated entire monogenic functions with that of the
maximum term of the related functions.

1-Introduction

Firstly, following Constales, Almeida and Krausshar (see [1] and
[2]), we give some definitions and associated properties .Let m=
(mg,m,,...,m,) € NJ be the n-dimensional multi-index and x € R" then we
define
XM=x," L x, ™, m=my! L mg! [m| =myt L Amy L (1)

By {e:; e,. _e.} we denote the canonical basis of the Euclidean
vector space R". The associated real Clifford algebra Cl, is free algebra
generated by R" modulo x°=-||x||%, , where e, is the neutral element with
respect to multiplication of the Clifford algebra ClI, .In the Clifford algebra
Cl, following multiplication rule holds :
eigjteei=-2 9ij , i,j =1,2,...,n. Where §;; is kronecker symbol. ... (2)

A basis for Clifford algebra Cl, is given by the set {e 4 :AC {1,2,...n)},
with e a=e ey, ....e;_.
Where 1< 1< |l,...<1,<n ,ey=60=1.Each a € Cl, can be written in the form
a=YAc(1,2,,n) AA €A

With as€ R.The conjugation in Clifford algebra CI, is defined by
azzAg(mmn) ap epx Where ep=e)_e;__, ... e, and e;=-g; forj=1,2...,n,
eo=€o=1. The linear subspace span r{1,e1,€,.,....en} S Cl, is the so called
space of Para vectors z = Xo + X; €1 + X, e, +...... +x, e, Which we simply
identify with R™.: Here Xx,=Sc(z) is scalar part and
X=X;81+Xy8,+...+X,en=Vec(z) is vector part of Paravector z: The Clifford
norm of an arbitrary a=}ac(12.n)as€a IS given by |la|l =

”»n

Cacaz.m laal?)'/2. The generalized Cauchy-Riemann operator in R™*

IS given by D= £+Zn e — . If UC R™ is an open set then the
0

i=1 ™ aXi

n
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function g: U—CI, is called left (right) monogenic at a point z € U if
Dg(z) =0 (gD(z) = 0). The functions which are left (right) monogenic in the
whole space called left (right) entire monogenic functions.
Following Abul-Ez and Constales [3], we consider the class of monogenic
polynomials p, of degree |m|, defined as
- (3) () (2)  Pm(2)=

0 ((n=1/2))i (n+1)/2))j
Zi+j:|m| il jt
Let , be n-dimensional surface area of n +1-dimensional unit ball and let
S " be n- dimensional sphere. Then, the class of monogenic polynomials
described in (3) satisfies (see [3], p. 1259)

— an Pm P1(Z) dS,= Ky 81y - (4)

Wm
Also following Abul-Ez and Constales [3], we have

maxz=r [[Pn@Il=Knrt"... (5)
Also we have some definitions that are needed
Definition 1.1. [6]: The order pg and lower order A4 0f monogenic function
g is defined as:

loglogM(r1,g)

oglogM(r,g)

Notation 1.2. [6]:- log!® x = x, exp!®! x = x and for positive integer k,
log!™ x =log (log 1 x),

exp™ x=exp(exp“* x).

Definition 1.3. [3]: The radius of regularity Ry of special monogenic
function g is defined by:

pg = lim, sup

hg = limy_,co inf

1

Ry=1/1imy; > |lcm [T . The function g is called entire monogenic
function if Ry=co.
A simple but useful relation between M(r,g) and u (r,g) is the following
theorem :-
Theorem 1.4. [7]: For 0 <r <R, u (r,g)<M(r,g)< &u(r,g),Taking
R=2r ,for all sufficiently large values of r

u(r,g)<M(r,g)<2 u(2r,g) . .. (8)
In theorem 1.4 taking two times logarithms in (8) it is easy to verify that:
log® p(rg)

pg = limy_q sup oer and
s . clog? u(rg)
Ag = limy, me :

In 1997 Lahiri and Banerjee [5] form the iterations of f (z) with respect to ¢
(2) as follows:-
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f1(2) =f(2)

f2(2)= 1(9(2))=f(9.(2))

f3(2)=1(9(f(2)))=1(92(2))=f(9(f:(2)))

fo(2)=f(g(f....... (f(z) or g(z))...)),according as n is odd or even
And so

9:1(2)=9(2)

92(2)=9(f(2))=9(f.(2))

93(2)=9(f2(2))=9(f(9(2)))

9n(2)=9(fr-1(2))=9(f(9n-2(2))). Clearly all f,(z) and gn(z) are entire
monogenic functions.
In this paper we study growth properties of the maximum terms of iterated
entire monogenic functions as compared to the growth of the maximum
term of the related monogenic function to generalize some entire results.
2- Lemmas

The following lemmas will be needed in sequel
Lemma 2.1. [4]: If fand g are any two entire functions, for all sufficiently
large values of r, then

M (z M(5,9) =19 f) <M, fog) < M (M, g), f).
Lemma 2.2: p; and pg are finite, then for any >0
Log™ u(rf.) < (pr + &)logM(r, g) + O(1) whenn is even.
(pg + €)logM(r,g) + 0(1) whenn is odd.

For all sufficiently large values of r, where f and g are entire functions.
Proof

First suppose that n is even, Then in view of (1.1) and by lemma (2.1) it
follows that for all sufficiently large values of r,
u(rf) < M(r, fo) <M (M(r,gn).f) , implies

log u(r,fr)<log M(M(r,gn1),f) )< [M(r, gn—1)]P

So, log™ u(rf,) <(oy +&) log M(r,g(fn—2)) < (py +&) [M(r, fr—5)]Po*¢

Thus,
log ™! u(r,f) <(py + £)log M (r,fr2)+O(D).

Therefore log ™ u(r,f,) <(ps +& ) log M(r,g)+O(1).
Similarly if n is odd then for all sufficiently large values of r
log™ u(r,fn) <(pg +¢) log M(r,g)+O(1).
This proves the lemma.
Now in ([7], p.113) we have the following lemma:
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Lemma 2.3
If As,Ay are non-zero finite, Then
Log™ u(r.f.) > (A -€ ) log M(r,g)+O(1) when n is even.
(Ag - ) log M(r,g)+O(1) when n is odd.
Proof
First suppose that n is even, let (€>0) be such that e< {A¢, A4 }, NOW we
have for all sufficiently large values of r ,

ur. f o g)> el
So, log u (1, f © g)> [M(r, 1Y~ (2.1)

Now
Log u (r, fn)=log  (r, f(9n-1))
> [M(r, gn-1)]Y ¢ using (2.1)
> [u(r, gn-1)]V ¢ From (1.1)
Log® pu(r,f)> (4 -€ ) log p (1, 9(Fr2))
>(Ap &) [M(r, f-2)]*~¢ using (2.1)

Then Log ™ u(r,fo)> (g -€ ) log i (1, g(f12))+O(2)
> (hg -& ) [M (T, gn-3)]¥ % +O(1)
Taking repeated logarithms
Log "™ u(r.f)= (g -& ) [M(r, 9)]* ¢ +O(1)

Then Log ™ pu(r,f)= (A -€ ) log M(r, g) +O(1), Similarly,
Log™ u(r,f)= (A -¢ ) log M (r, f) +O(1) when n is odd .
This proves the lemma.
3-Main results
Now we prove the following:
Theorem 3.1:

Let f and g be two entire monogenic functions , such that
0<M=<p<oo, and 0<Aq<py<co .Then for any positive number A and every
real number o :

log™ p(r,f)
[loglogu(rd f)]+e

.. ) log™ u(r,f)
(i) Lim;_ [loglog n(r4 ,g)]i+e

(i) lim,q

Proof
If a<-1 then the theorem is trivial. So we suppose that a>-1 and n is
even. Then from lemma 2.3 we get for all sufficiently large values of r and
any € (0<e<min {2, Ag})
Log™ u(r,f)= (A -¢ ) log M(r, g) +O(1)
> (As-e)r*e~¢ +O(1) (3.1)
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Again from definition (1.1) it follows that for any €>0 and for all large
values of r,
{loglogn(r®, HY** < (py +&)0F® A™ (log r'
(3.2)

From (3.1) and (3.2) we have for all large values of r and any ¢ (0<g <
min {As, Ag})

log™ u(r.f) (Ag —e)rta > (A —e)rto~e
[loglog n(r4 I+ = (pp+e)A+® AW (logryt*e = () | )I¥D g1ta (1gr)1+a
0(1)

Since £>0 is arbitrary, Then
log™ p(r,fn)
[loglogn(r4 f)]t+e

lim, o

(3.3)
Similarly for odd n we get
Log™ u(rf) = (A -e) r¥~¢ +0(1) (3.4)
So from (3.2) and (3.4) we have the equation (3.3) for odd n.
Therefore for all n the statement (i) follows.
Second part of this theorem follows similarly by using the following
inequality instead of (3.2)
{loglogu(r®, g)}'** < (pg +&)*® A (logr)"™
For all large values of r and arbitrary £>0. This proves the theorem.
Theorem 3.2

Let f and g be two entire monogenic functions of finite orders and( As ,
Ag )= 0 then for p>0 and each real number o € (-o0,00)
{tog™u(r, i)}
loglogp(exp(rP),f)
{tog™u(r, i)}
loglogu(exp(rP),f)

1) lim,, e =0if p>(1+a) pgand n is even,

@) lim,_ =0 if p>(1+a) prand n is odd.
Proof
If a<-1 then the theorem is trivial. So we suppose that a >-1 and n is even.
Then from lemma 2.2 we get for all sufficiently large values of r and any
e>0.
Log ™ u(r.f) < (ps+e) log M (r, g) +O(1)

< (p; +e)rfs™® +0(1) (3.5)
Again from definition 1.1 it follows that for any 0< e< A;+ and for all large
values of r, (3.6)
So from (3.5) and (3.6) we have for all large values of r and any ¢ (0< &<

M)
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{log[n]u (" fn )}1+a < (pf +£)1+a r(1+a)(Pg+£)
loglogu(exp(rP).f) — (Af-eTP
can choose ¢ such that 0<e<min{Af,

I {logMu (r fu)}™+* _
o o glogu(exp(rP) ) _ |
Similarly when n is odd then we get the second part of this theorem .This

proves theorem.
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