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Abstract  
In this paper we consider the relative iteration of entire special 

monogenic functions and we studied the comparative growth of the 

maximum term of iterated entire monogenic functions with that of the 

maximum term of the related functions. 

1-Introduction  
Firstly, following Constales, Almeida and Krausshar (see [1] and 

[2]), we give some definitions and associated properties .Let m= 

(m1,m2,…,mn)      
   be the n-dimensional multi-index and x   R

n
 then we 

define 

x
m
=x1

m1…xn 
mn

,  m  =m1  …,mn ,| | =m1+…+mn …  (1) 

By {e1, e2,….,en} we denote the canonical basis of the Euclidean 

vector space R
n
. The associated real Clifford algebra CIn is free algebra 

generated by R
n
 modulo x

2
=-‖ ‖2

e0 , where e0 is the neutral element with 

respect to multiplication of the Clifford algebra CIn .In the Clifford algebra 

CIn following multiplication rule holds : 

eiej+ejei=-2 δi,j  ,  i,j =1,2,…,n.  Where   δij is kronecker symbol. …  (2) 

A basis for Clifford algebra CIn is given by the set {e A :A⊆ {1,2,…,n)}, 
with  e A=      …,    . 

 Where 1≤ l1≤ l2…≤ lr≤n ,eϕ=e0=1.Each a   CIn can be written in the form 
a=∑    ⊆           ,  

With aA  R.The conjugation in Clifford algebra CIn is defined by  

 =∑    ⊆              Where   =         
        and     =- ej  for j=1, 2…,n ,  

  =e0=1. The linear subspace span R{1,e1,e2,…,en} ⊆ CIn is the so called 

space of Para vectors z = x0 + x1 e1 +       +……+      which we simply 

identify with R
n+1

:  Here x0=Sc(z) is scalar part and 

x=x1e1+x2e2+…+xnen=Vec(z) is vector part of Paravector z: The Clifford 

norm of an arbitrary a=∑      ⊆            is given by ‖ ‖   

 ∑   |  |  ⊆              . The generalized Cauchy–Riemann operator in R
n+1

 

is given by D= 
 

   
 ∑   

 
    

 

   
 .  If U⊆ R

n+1
 is an open set then the 
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function  g: U→CIn  is called left (right)  monogenic at a point z   U if  

Dg(z) =0 (gD(z) = 0). The functions which are left (right) monogenic in the 

whole space called left (right) entire monogenic functions. 
Following Abul-Ez and Constales [3], we consider the class of monogenic 

polynomials pm of degree |m|, defined as                                                         

                                        …   (3 )         ( )
i
 (z)

j
  Pm(z)= 

∑  
          

  

              

  

  
    | |    

Let ωn be 𝑛-dimensional surface area of 𝑛 +1-dimensional unit ball and let 

𝑆 n
 be 𝑛- dimensional sphere. Then, the class of monogenic polynomials 

described in (3) satisfies (see [3], p. 1259) 

    
 

  
   ∫s

n
            dSz= km  | || |  …  (4)           

Also following Abul-Ez and Constales [3], we have 

                            ‖ ‖   ‖     ‖ =km r 
m…  (5)   

Also we have some definitions that are needed   

Definition 1.1. [6]: The order ρg and lower order λg of monogenic function 

g is defined as: 

                       ρg   =          
            

    
 …  (6)              

                        λg =          
            

    
…  (7)   

Notation 1.2. [6]:-        x = x,        x = x and for positive integer k, 

       x =log (log 
[k-1]

 x),   

exp
[k]

 x=exp(exp
[k-1] 

x). 

Definition 1.3. [3]: The radius of regularity Rg of special monogenic 

function g is defined by: 

Rg=    ‖ ‖  ‖  ‖
 

‖ ‖⁄   .  The function g is called entire monogenic 

function if Rg= .  

A simple but useful relation between M(r,g) and 𝜇 (r,g) is the following 

theorem :- 

Theorem 1.4. [7]: For        , 𝜇 (r,g) M(r,g) 
 

   
 𝜇(r,g),Taking 

R=2r ,for all sufficiently large values of r  

 𝜇(r,g) M(r,g) 2 𝜇(2r,g)  . …  (8)                

In theorem 1.4 taking two times logarithms in (8) it is easy to verify that: 

                                    ρg   =          
             

    
        and                                                                          

                          λg =          
             

    
  . 

In 1997 Lahiri and Banerjee [5] form the iterations of f (z) with respect to g 

(z) as follows:- 
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f1(z) =f(z) 

f2(z)= f(g(z))=f(g1(z)) 

f3(z)=f(g(f(z)))=f(g2(z))=f(g(f1(z))) 

       …           …            … 

fn(z)=f(g(f…….(f(z) or g(z))…)),according as n is odd or even  

And so 

g1(z)=g(z) 

g2(z)=g(f(z))=g(f1(z)) 

g3(z)=g(f2(z))=g(f(g(z))) 

       …          … 

gn(z)=g(fn-1(z))=g(f(gn-2(z))). Clearly all fn(z) and gn(z) are entire 

monogenic functions. 

In this paper we study growth properties of the maximum terms of iterated 

entire monogenic functions as compared to the growth of the maximum 

term of the related monogenic function to generalize some entire results.   

2- Lemmas  
     The following lemmas will be needed in sequel  

Lemma 2.1. [4]: If  f and g are any two entire functions, for all sufficiently 

large values of r, then 

M ( 
 

 
  (

 

 
  )  |    |      M (r, f  g)   M (M(r, g), f). 

Lemma 2.2: ρf  and  ρg  are finite, then for any ε>0  

Log
[n]

 𝜇(r,fn)                             𝑛 𝑛       𝑛. 

                                                     𝑛 𝑛       . 

For all sufficiently large values of r, where f and g are entire functions. 

Proof  

   First suppose that n is even, Then in view of (1.1) and by lemma (2.1) it 

follows that for all sufficiently large values of r, 

 𝜇(r,fn)             M (M(r,gn-1),f) , implies     

                   log 𝜇(r,fn) log M(M(r,gn-1),f) )             
      

      So,  log
 [2]

 𝜇(r,fn)  (   +ε) log M(r,g(     )      +ε )            
     

   Thus,   

               log
 [3] 𝜇(r,fn)  (       log M (r,fn-2)+O(1). 

Therefore log
 [n]

 𝜇(r,fn)  (   +ε ) log M(r,g)+O(1). 

Similarly if n is odd then for all sufficiently large values of r  

log
 [n]

 𝜇(r,fn)  (   +ε ) log M(r,g)+O(1). 

This proves the lemma. 

Now in ([7], p.113) we have the following lemma: 
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 Lemma 2.3  

If   λf ,λg  are  non-zero  finite , Then  

Log
[n]

 𝜇(r,fn) > (λf -ε ) log M(r,g)+O(1)  when n is even.  

         (λg -ε ) log M(r,g)+O(1)  when n is odd. 

Proof  

First suppose that n is even, let (ε>0) be such that ε< {λf , λg }, now we 

have for all sufficiently large values of r , 

             𝜇(r,    )>          
    

 

So, log 𝜇 (r,    )>                 (2.1) 

Now  

Log 𝜇 (r, fn)=log 𝜇 (r, f(gn-1)) 

                     > [          
                                     using (2.1) 

                       [          
                                      From (1.1) 

 Log
 [2]

 𝜇(r,fn)> (λf -ε ) log 𝜇 (r, g(fn-2)) 

  >    -ε )            
                          using (2.1) 

            Then Log
 [3]

 𝜇(r,fn)> (λg -ε ) log 𝜇 (r, g(fn-2))+O(1)   

                                         > (λg -ε             
      +O(1) 

Taking repeated logarithms  

       Log
 [n-1]

 𝜇(r,fn)  (λg -ε )              +O(1) 

Then Log
 [n]

 𝜇(r,fn)  (λf -ε ) log M(r, g) +O(1), Similarly, 

Log
 [n]

 𝜇(r,fn)  (λg -ε ) log M (r, f) +O(1) when n is odd . 

This proves the lemma. 

3-Main results 
Now we prove the following: 

Theorem 3.1: 

 Let   f  and  g be two  entire monogenic functions , such that  

0<λf ρf<  , and 0<λg ρg<  .Then for any positive number A and  every 

real number α : 

(i)       
              

                   
  . 

(ii)        
              

                    
    

 

Proof  

If α -1 then the theorem is trivial. So we suppose that α>-1 and n is 

even. Then from lemma 2.3 we get for all sufficiently large values of r and 

any ε (0< ε < min { λf ,  λg } )  

Log
 [n]

 𝜇(r,fn)  (λf -ε ) log M(r, g) +O(1) 

                       (λf -ε   
      +O(1)   (3.1) 
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Again from definition (1.1) it follows that for any ε>0 and for all large 

values of r, 

                                 A1+α 
(log r)

1+α
                                                                              

(3.2)
 
 

  From (3.1) and (3.2) we have for all large values  of r  and any ε  ( 0< ε  < 

min { λf ,  λg } ) 

              

                    
  

             

                          
  

(      )     

(    )
     

               
 

       

Since ε>0 is arbitrary, Then 

      
              

                   
                                                                                                              

(3.3) 

Similarly for odd n we get  

Log
 [n]

 𝜇(r,fn)   (λg -ε )  
     +O(1)   (3.4) 

So from (3.2) and (3.4) we have the equation (3.3) for odd n. 

Therefore for all n the statement (i) follows. 

Second part of this theorem follows similarly by using the following 

inequality instead of (3.2)  

                                  A1+α 
(log r)

1+α
 

For all large values of r and arbitrary ε>0. This proves the theorem. 

Theorem 3.2  

Let f and g be two entire monogenic functions of finite orders and( λf , 

λg  )  0 then for  p>0 and each real number α   (- , )   

(i)       
                  

                  
 =0 if   p> (1+α) ρg and n is even, 

(ii)       
                  

                  
 =0 if   p> (1+α) ρf and n is odd. 

Proof  

If α -1 then the theorem is trivial. So we suppose that α >-1 and n is even. 

Then from lemma 2.2 we get for all sufficiently large values of r and any 

ε>0.   

Log
 [n]

 𝜇(r,fn)   (  +ε ) log M (r, g) +O(1) 

                        (             +O(1)  (3.5) 

Again from definition 1.1 it follows that for any 0< ε< λf  and for all large 

values of r,   (3.6) 

So from (3.5) and (3.6) we have for all large values of r and any ε (0< ε< 

λf)  
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 +O(1) , since ε>0 is arbitrary ,we 

can choose ε such that 0<ε<min{    
 

   
     ,Then 

      
                 

    

                   
    . 

Similarly when n is odd then we get the second part of this theorem .This 

proves theorem. 
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 عن المنشأ ةحاديأخاصه  تكراريةالنمو لدوال 

  د . ألشبانيمشتاق شاكر                  السادة           م.أسيل حميد عبد 

 كلية التربية الأساسية                                      كلية العلوم          

 المستنصرية الجامعة                                  الجامعة المستنصرية
 

 -:الخلاصة

اصه احاديه المنشأ و درسنا النمو لدوال خ تدارسنا العلاقة التكراريه   هذه المقاله في 

  ظم للدوال ذات الصلة.الحد الأع  كمع ذلل  دوال احاديه المنشألل عظمللحد الأ المقارن


