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Abstract
The fractional derivative is considered in medified Riemann-Liouville
derivative sense. A reduction of order method 1s used for constructing
exact solution of some time fractional differential equations. More new
soliton solution 1s obtained for time-fractional Klein-Gordon equation,
time-fractional Burgers equation and time-fractional Hirota-Satsuma
coupled KdV system. This method can be applied to many other
nonlinear fractional partial differential equations in mathematical physics.
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Gordon equation, time-fractional Burgers equation and time-fractional
Hirota-Satsuma coupled KdV system.
1-Introduction

Fractional differential equations are generalizations of classical
differential equations of integer order. The nonlinear fractional
differential equations in mathematical physics have played a major role in
various areas. These equations appear in a great variety of contexts, such
as physics, biology, engineering, fluid flow, signal processing, control
theory and fractional dynamics. Many powerful and efficient methods
have been proposed to obtain numerical solutions and exact solutions of
fractional differential equations so far. For example, these methods
include the first integral method [1], the (G'/G)-expansion method [2],
the functional variable method [3].].the invariant subspace method [4],
the exp-function method [5], the integral transform method [6], the
fractional sub-equation method |[7], the generalized Exp-function
method[8], the variational iteration method [9], the improved (G'/G)-
expansion method [10], the generalized (G'/G)-expansion method
[11],the homotopy analysis method[12], the expanding perturbation
approach [13], the extended trial equation method[14]. Recently,
M.Saravi [15] introduced a new method called pscudo-first integral
method to look for traveling wave solutions of non linear partial
differential equations in this method the author use part of the first
integral method [16], and then by reduction of order method [17].In this
paper, we propose a reduction of order method to establish exact
solutions for time-fractional partial differential equations in the sense
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modified Riemann-Liouville derivative by Jumarie [18,19 |.To illustrate
the validity and advantages of proposed method , we apply it to the time-
fractional Klein-Gordon equation, the time-fractional Burgers equation
and the time-fractional generalized Hirota-Satsuma coupled KdV system.
2- The modified Riemann-Liouville derivative and reduction of order
method

The Jumarie's modified Rieman-Liouville derivative of order « 1s
defined by the expression [19 ]

o — H _gy—o-l _
D f(x)= { Id-a) g(x € T EE)-f(0)dE, a<0 (D)
o _ 1 ix _gyo-l _
D f(x) = {F(l— o) dx g(x &) T (E)-f(0pdg, O<a<l, (2)
D2f(x) = {[f(“_“) x| ,n<a<n+1,n>1. (3)

Some properties for the proposed modified Riemann-Liouville derivative
are listed in [19 ] as follows:

rG+)

o Y
DXX _F('¥+1—(x) b) ‘Y>09 (4)
D (F(0)g(x)) = g(x)DI(X) +f(x)DYg(x) (3)
DEf[g(0)] = f,[g(x) DY g(x) = D flg(0)l(g'(x)” (6)

Where f:R—-R, x—>f(x) denote a continuous (but not necessarily
differentiable) function. We now describe the proposed method for
finding exact solutions of nonlinear time-fractional differential equations
as follows. Let us consider the time fractional differential equation with
independent variables x = (xq,x,,...x,,,t)and a dependent variableu,
F(u,Dfu,uy ,uy, 5eens Df“u,u,qxz ) =0 (7)
Using the variable transformation [1]:

¥
Irad+o’ ®)
Where k.1, and A are constants. The fractional differential Eq. (7) 1s
reduced to a nonlinear ordinary differential equation

U=(X{,Xp0e X )= UE), E=x1 +11xp +ec + 11X —

Q = (UE)U'(€), U"(E)swn..)s )

Where "' " =:§ By introducing a new independent variable p = U'(§)

then U"(g)=p3—p , which change Eq.(9) to an ordinary differential
u

equation of the form
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d
N(u,p,p£)= 0 (10

Now, we seek a solution for Eq.(10) by a desired method that been
considered in the ordinary differential equation textbooks [ 20 ].

3- Applications

In this section, we present three examples:

Example 1: Time-fractional Klein-Gordon equation

The following time-fractional Klein-Gordon equation:

8%%u(x,t) 3 d%u(x,t)
atZ(I. - axz
We introduce as in [1] the following transformations

at®
H(X,t) = U(‘t:) s ‘t: =Ix - F(1+0'.)

faux,H+ecu’(xt), t>0,0<a<l (11)

(12)

Where 1,A 1s constant. Substituting Eq.(12) into Eq.(11), then Eq.(11) 18
reduced to an ordinary differential equation:

2 2

228 22V L vsen? (13)
o8 o8

This is a non linear second order ordinary differential equation free of & .

2
The substitution v’=%" = p andU"= Ll p dp , reduces Eq.(13) to
dg de? U
dp ., dp 3

Mp—=1"p—+aU+cU 14
Por Py +aU+e (14)

This can be written as

A2 =1Hpdp =aU+cU? (15)

Integrating Eq.(15) once and let the constants of integration to be zero,
then
o4

2 a 2
P =7K2_12U +CT (16)
That 1s,
c 2 2a
=/- U U+ 17
P \E \/ c(Ar-1%) a7n

. dU
Since p=U'=—, then
dg

dU '
=/ a 18
U\/U2+2a 2 © o

(At -1
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The solution of Eq.(18) 1s
\f E+8 (19)

e -1h) c(7\,2 —1%
, then Eq.(19)
@)

) csch_1 U

2a

i At
By setting&y =0, UE)=u(x,t) and§=1Ix- T+

2 ¥
u(x,t) = ITilz) eseh( il 5 e (20)

This 1s a solution for Eq.(11).

Remark 1: In [1], the author solved Eq.(11) by first integral method and
obtained four exact solutions different from our solution Eq.(20), while in
[3], the authors solved Eq.(11) by functional variable method and
obtained four exact solutions, one of them is agreement with our solution
Eq.(20).

Example 2: Time — fractional Burgers equation

The following time-fractional Burgers equation:

&+au@—v@=0, t>0,0<a<l1 21

ot” ox  ox?

Where o 1s a parameter describing the order of the fractional time
derivative.

For our purpose, we introduce the following transformations [1]:

At
ux,)=UE) ; E=1x— I+
Where 1,4 1s constant. Using Eq.(22) carries Eq.(21) into an ordinary
differential equation as follows :
— AU +1e UL —13vU" =0 (23)

(22)

Where U’=%. By integrating Eq.(23) once and considering the

constants of integration to be zero, then we obtain the ordinary

differential equation
2

—xU+1sU2—12vU'=0 (24)

The substitution U’ = p, reduces Eq.(24) .to

—?\,U+18U72—12vp=0 (25)

Eq.(25) can be written as

EPIER LTI L (26)
2 dg
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The variables are separated, then integrating both sides of Eq.(26) and let
the constant of integration equal to zero, this leads to

2A 1
U(F;) = E(j) (27)
1—e vi2
Now we substituteUg)=u(x,t) and &=1x — A , then Eq. (27)
T+ )

becomes

2A 1
u(x,t)=—J 1 (28)

lg L(lx— A% )

1— ev12 T(1+er)

Remark 2: In [2], the authors solved Eq.(21) by (G'/G)- expansion
method and obtained three exact solutions different from our
solution.Eq.(28).

Example 3: Time — fractional generalized Hirota-Satsuma coupled
KdV system.

Let us apply our method to the generalized Hirota-Satsuma coupled KdV
system which 1s of the form

1
Diu= 7l +3uu, +3(-v> +w),,

3uv, (29)

-1
D?V: TVxxx_

Diw =7wxxx—3uwx, 0<ac<l,

Where u=u(xt), v=v(x,t) and w=w(x,t).IFor our purpose, we
introduce the following transformations as in [1]:
ll(X,t) = lU(g)Z,V(X,t) =-A+ U(&),w(x,t) = 27\'2 - ZKU(g)a g =X- M

A '+ o)

(30)
Where A is a constant. Substituting Eq.(30) into Eq.(29), we can see that
Eq.(29) are reduced into an ordinary differential equation

otu

A +20 —22tu=0 31

o 1)
2
If we suppose ?12 =p and j;; =p :lill} , then Eq.(31) converts to
lpd—p+2U3 —22ku=0 (32)
dU
This can be written
Apdp=(rA2U—-2U%)du (33)
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The variables are separated, then once integration leads to
p2=2kU2—;U4+C (34)
LetC =0, then

p=TU /zx—;uz (35)

Since p = E, then
dg

dU 1
-l (36)
uvaaz-u? VA
By integrating both sides of Eq.(3 6), then
h! 37
G i G
By setting B=0, Eq.(37) become
U(E) = A v2 sech(—+22 &) (38)
Now, we substitute Eq.(38) in Eq.(30), and U(£) = u(x,t),then
u(x,t) = 2Asech?[\2A (r(1 ) —x)]
V(x,t) = —A+2Av2 - (39)
) 2 _
wix,t)=222—2222 sech[\/_ (F(1 > )

Eq.(39) 1s the solution of Eq.(29).

Remark 3: In [1], the author solved Eq.(29) by using first integral
method and obtained two exact solutions different from our solution,
while in [3], the authors solved by functional variable and obtained two
exact solution agreement with our solution Eq.(39).

4- Conclusions

The reduction of order method is applied successfully for solving the
time-fractional Klein-Gordon equation and the time-fractional Burgers
equation and the time-fractional Hirota-Satsuma coupled KdV system.
The performance of this method is reliable, effective and produce easily
exact solutions for several families of time-fractional differential
equations and on comparing the proposed method in this article with the
other methods used in [1, 2, 3], we find that the reduction of order
method 1s simpler than those methods.
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