On S-Subcontinuous multifunctions

Adea. K. Al-Obiadi

Dept. of Math. Faculty of Basic Education, Al- Mustansiryah University

ABSTRACT.

R.V. Fuller in [5] introduced the concept of subcontinuous function and used it to obtain conditions implying continuity. In [9] R. E. Simthson extended this concept to multifunctions and used it to obtain a number of results on multifunctions, and also developed criteria under which a multifunction is upper semi continuous.

In this paper we introduce the notion of s-subcontinuity for multifunction as a generalization of subcontinuity and use it to obtain many results on multifunction with s-closed graphs. Conditions implying upper semi continuity [8] for multifunction are derived.

Several characterizations for upper semi-continuity and lower semi continuity [8] are obtained using filterbasis.

1. INTRODUCTION.

Let A be a subset of X, the closure of A and the interior of A are denoted by Cl(A) and Int(A) respectively. Levin in [6] introduced the notion of semi – open sets (briefly s-open), so that A is s-open if there exists an open set U such that $U \subset A \subset Cl(U)$, equivalently $A \subset Cl(Int(A))$. The family of all s-open sets is denoted by SO(X). The complement of Sopen set is said to be semi-closed (briefly s-closed), the family of all S-SC(X). The smallest closed sets of X is denoted by s-closed set containing a subset A is called the semi-closure of A and denoted by sCl(A)[3]. The semi-interior of A denoted by sInt(A), is the largest s-open set contained in A. A subset $A \subset X$ is called α -set if $A \subset Int(Cl(Int(A)))$ [7]. The family of all α -sets in X is denoted by τ^{α} . It was shown that τ^{α} is a topology on X finer than τ [7]. A point $x \in X$ is called semi limit(s-limit) point of $A \subset X$ if every s-open set containing x contains a point of A different from x [2]. A subset N of a space X is called semi-neighborhood (s-nbd) of a point $x \in X$ iff there exists $U \in SO(X)$ such $x \in U \subset N$. A net $\{x_n\}$ in X is called s-convergent to $x \in X$, denoted by $\{x_n\} \xrightarrow{s} x$ iff $\{x_n\}$ is eventually in every semi-open set containing x [2]. If Ω is a filterbase on X

On S-Subcontinuous multifunctionsAdea. K. Al-Obiadi

then we define the semi-adherence of Ω in X to be the set $\bigcap \{sCl(B):B \in \Omega\}$ and denote it by $ad_s \Omega$.

Throughout the present paper $F: X \to Y$ (respectively) $f: X \to Y$) represents a multifunction (respectively a single valued function). For a multifunction $F: X \to Y$ the upper and lower inverse of a subset V of Y are denoted by $F^+(V)$ and $F^-(V)$ respectively, where $F^+(V) = \{x \in X : F(x) \subset V\}$ $F^-(V) = \{x \in X : F(x) \cap V \neq \phi\}.$ Further, if then and $A \subset X$ $F(A) = \bigcup \{F(x) : x \in A\}.$ We denote the graph of F by G_F Where $G_F = \{(x, y) : x \in X, y \in F(x)\}$. A multifunction *F* is said to have closed (s-closed) graph if G_F is closed (s-closed) subset of the space $X \times Y$. Let P be a property of sets, then a multifunction $F: X \rightarrow Y$ is called point P if F(x)has property P for each $x \in X$. Properties we shall use in this paper are closed, s-closed, and s- rigid (Definition 3.1)

Throughout this paper X and Y represent nonempty topological spaces on which no separation axioms are assumed unless otherwise mentioned.

2. PRELIMINARIES.

The following definitions and results will be useful in the sequel.

2.1. Theorem. [2]

If $\{x_n\}$ is s-convergent net then $\{x_n\}$ is convergent and the converse is not necessarily true as the following example shows:

2.2. Example. [2]

Let X = [-1, 1] with usual topology on X, then $\{\frac{1}{n}\}_{n \in N}$ converges to 0

but $\{\frac{1}{n}\}_{n \in \mathbb{N}}$ not s-converges to 0.

2.3. Definition. [2]

A space X is semi compact (briefly s-compact) iff every cover by sopen sets has a finite subcover, and $A \subset X$ is s-compact iff every cover of A by s-open sets in A has a finite subcover.

2.4. Theorem. [2]

A space x is s-compact if and only if every net in x has an s-convergent subset.

The following theorem is easy to prove,

2.5. Theorem

A space x is s-compact if and only if every s-closed subset of x is s-compact.

2.6. Definition. [7]

On S-Subcontinuous multifunctionsAdea. K. Al-Obiadi

A space X is called extremely disconnected if the closure of each open set in X is open in X.

2.7. Theorem. [7]

Let *X* be extremely disconnected then SO(X) is a topology on *X* and $SO(X) = \tau^{\alpha}$.

We introduce the following result which is a consequence of the above theorem.

2.8. Theorem.

Let X be extremely disconnected, $x \in X$ and $A \subset X$. Then $x \in sCl$ (A) iff there is a net of points of A, s-converging to x.

2.9. Theorem. [3]

 $Int(Cl(A)) \subset sInt(sCl(A))$.

Using this theorem and the fact that $sInt(A) \subset A$, we have.

2.10. Lemma.

 $Int(Cl(A)) \subset sCl(A))$.

2.11. Definition. [1]

A multifunction $F: X \to Y$ is said to be:

(1) Upper semi continuous (*u.s.c*) if for each $x \in X$ and each open set

V of Y containing F (x) there exists an open set $U \subset X$ containing x

such that

 $F(U) \subset V.$

(2) Lower semi continuous (*l.s.c.*) if for each $x \in X$ and each open set

V of Y such that $F(x) \cap V \neq \phi$ there exists an open set $U \subset X$

containing *x*

such that $F(u) \cap V \neq \phi$ for every $u \in U$.

(3) Continuous if it is (*u.s.c*) and (*l.s.c.*).

2.12. Definition. [8]

A multifunction $F: X \rightarrow Y$ is said to be:

(1) Upper s-semi continuous $(\bar{s}.s.c.)$ if $F^+(V) \in SO(X)$ for each open set V of Y.

(2) Lower s-semi continuous ($\underline{s} \ s.c.$) if $F^-(V) \in SO(X)$ for each open set V of Y.

(3) Semi-continuous (s.c.) if it is $(\bar{s}.s.c.)$ and $(\underline{s}.s.c.)$.

The $(\bar{s}.s.c.)$ and $(\underline{s}.s.c.)$ multifunctions was studied in some details by

Popa[9].

2.13. Theorem. [8]

The following are equivalent for multifunction $F: X \to Y$.

(1) *F* is $(\bar{s}.s.c.)$

(2) For each $x \in X$ and each open set $V \subset Y$ with $F(x) \subset V$

there exist $U \in SO(X)$ such that $x \in U$ and $F(U) \subset V$.

(3) $F^{-}(V) \in SC(X)$ for each closed set $V \subset Y$.

(4) $Int(Cl(F^{-}(B))) \subset F^{-}(Cl(B))$ for each $B \subset Y$.

3. SOME CHARACTERIZATIONS.

In this section we introduce the notion of s-rigidity analogous to Dickman's definition of θ -rigidity [4].

3.1. Definition.

A set $A \subset X$ is s-rigid if $A \cap ad_s \Omega \neq \phi$ whenever Ω is a filterbase on X satisfying $B \cap U \neq \phi$ for each $B \in \Omega$ and $U \in SO(X)$ containing A.

The following Lemma is needed in the proofs of the following results.

3.2. Lemma.

Let $A \subset X$, $x \in X$, then, $x \in sCl(A)$ if and only if for each $U \in SO(X)$ containing x, $U \cap A \neq \phi$.

Proof:

Suppose that x is not in sCl(A), the set U = X- sCl(A) is an s-open set containing x and $U_{\cap}A = \phi$. Conversely, if there is an s- open set U containing x such that $U_{\cap}A \neq \phi$, then X- U is an s- closed set containing A. hence X- U contain sCl(A), therefore x cannot in sCl(A).

Now we introduce the following characterizations for $\bar{s}.s.c.$ multifunction.

3.3. Theorem.

The following statements are equivalent for a multifunction $F: X \rightarrow Y$, where F is point s- rigid.

- (1) F is $\bar{s}.s.c.$
- (2) $ad_s F^-(\Omega) \subset F^-(ad_s\Omega)$ for each filterbase Ω on F(X).
- (3) $sCl(F^{-}(B)) \subset F^{-}(sCl(B))$. for each $B \subset Y$.

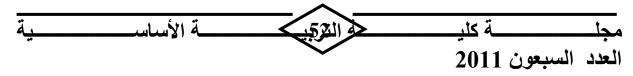
Proof:

(1) \Rightarrow (2) Let $x \in ad_s F^-(\Omega)$. Since F is $(\bar{s}.s.c.)$, for each open set W in Y such that $F(x) \subset W$, there is $U \in SO(X)$ containing x such that $F(U) \subset W$. Since $x \in ad_s F^-(\Omega)$, so $x \in sCl(F^-(A))$ for each $A \in \Omega$. Therefore, by Lemma 3.2, $F^-(A) \cap U \neq \phi$, thus $A \cap W \neq \phi$. Since F(x) is s-rigid, it follows that $F(x) \cap ad_s \Omega \neq \phi$. Hence $x \in F^-(ad_s \Omega)$.

 $(2) \Rightarrow (3) \text{ and } (3) \Rightarrow (1) \text{ are obvious.}$

Popa in [8] proved several characterizations for (s.s.c.) multifunction.

Our next theorem improves on these results by using filterbases thus (3), (4), (5) are new characterizations.



3.4. Theorem.

The following are equivalent for a multifunction $F: X \to Y$.

- (1) F is (<u>s.s.c.</u>).
- (2) For each open set $V \subset Y$ and for each $x \in X$ with $F(x) \cap V \neq \phi$, there is $U \in SO(X)$ containing x and $F(u) \cap V \neq \phi$ for each $u \in U$.
- (3) $F(ad_s \Omega) \subset ad F(\Omega)$ for each filterbase Ω on X.
- (4) $F(sCl(A)) \subset Cl((F(A)))$ for each $A \subset X$.
- (5) Each family Ω of subsets of *Y* satisfies $\bigcap_{B \in \Omega} sCl(F^{+}(B)) \subset F^{+}(\bigcap_{B \in \Omega} Cl(B))$
- (6) $sCl(F^+(B)) \subset F^+(Cl(B))$ for each $B \subset Y$.
- (7) $F^+(B)$ is s-closed in *X*, for each $B \subset Y$.
- (8) Int $(F^+(B)) \subset F^+(Cl(B))$ for each $B \subset Y$.

Proof:

(1) \Rightarrow (2) This is proved in [8].

(2) \Rightarrow (3) Let Ω be a filterbase on $X, x \in ad_s \Omega$ and $y \in F(x)$. Let W be open in Y

such that $y \in W$. Hence by (2) there is $U \in SO(X)$ containing x such that $U \subset F^{-}(W)$. Since $x \in ad_s \Omega$, so $x \in sCl(A)$ for each $A \in \Omega$. Hence, by

Lemma 3.2, for each $U \in SO(X)$ containing $x, U \cap A \neq \phi$. Therefore $F^{-}(W) \cap A \neq \phi$. Thus $W \cap F(A) \neq \phi$ for each $A \in \Omega$, so $y \in Cl(F(A))$ for each $F(A) \in F(\Omega)$. Therefore $y \in ad F(\Omega)$. (3) \Rightarrow (4) Obvious.

(4) \Rightarrow (5) Suppose Ω is a family of subset of *Y* which fails to satisfy the inequality in (5). Thus $\bigcap_{B \in \Omega} sCl(F^+(B)) \not\subset F^+(\bigcap_{B \in \Omega} Cl(B))$, so there is

 $X \in \bigcap_{B \in \Omega} sCl(F^+(B))$ and $X \notin F^+(\bigcap_{B \in \Omega} Cl(B))$. Hence

 $F(x) \subset F(sCl(F^+(B)))$

for each $B \in \Omega$, and $F(x) \not\subset Cl(B)$ for some $B \in \Omega$. Hence $F(x) \not\subset Cl(F(F^+(B)))$. Therefore $F(sCl(F^+(B)) \not\subset Cl(F(F^+(B))))$, thus (4) fails

 $(5) \Rightarrow (6)$ this is obvious.

 $(6) \Rightarrow (7), (7) \Rightarrow (8) \text{ and } (8) \Rightarrow (1) \text{ are proved in } [8].$

4. S-SUBCONTINUOUS MULTIFUNCTIONS AND SEMI CONTINUOUS

MULTIFUNCTIONS.

Fuller [5] introduced and studied the notion of subcontinuous function, Smithson [9] extended this definition to multifunction, so that $F: X \to Y$ is subcontinuous iff whenever $\{x_n\}$ is convergent in X, and $\{y_n\}$ is a net in F (X) with $y_n \in F(x_n)$ for each n, then $\{y_n\}$ has a convergent subnet.

We introduce the notion of s-subcontinuity as a generalization of Smithson's definition.

4.1 Definition.

A multifunction $F: X \to Y$ is s-subcontinuous if and only if whenever $\{x_n\}$ is s-convergent net in X and $\{y_n\}$ is a net in F(X) with $y_n \in F(x_n)$ for each n, then $\{y_n\}$ has an s-convergent subset.

The following result is an immediate consequence of definition 4.1 and Theorems 2.4, 2.5.

4.2 Theorem.

Let $F: X \to Y$ be an s-subcontinuous multifunction if $A \subset X$ is s-compact and F(A) is s-closed then F(A) is s-compact.

Now we characterize s-compact preserving multifunctions in terms of ssubcontinuity.

4.3 Theorem.

Let $F: X \to Y$ be a multifunction. Then *F* is s-compact preserving iff $F_{A}: A \to F(A)$ is s-subcontinuous for each s-compact $A \subset X$, where F_{A} denotes the restriction of *F* on *A*.

Proof:

Necessity: suppose *F* is an s-compact preserving. Let *A* be s-compact, then *F*(*A*) is s-compact. Then by Theorem 2.4, every net in *F*(*A*) has an s-convergent subnet. Hence $F_{|A|} \rightarrow F(A)$ is s-subcontinuous.

Sufficiency: let $A \subset X$ be s-compact and $F_{A} \to F(A)$ be s-subcontinuous. Then every net in F(A) have a convergent subnet. Hence by Theorem 2.4, F(A) is s-compact.

Now we use the notion of closed graph to give some properties of $\bar{s}.s.c.$ multifunctions, first we introduce the following example to show that a multifunction with an s-closed graph need not be s-continuous.

4.4. Example.

Let $X = \{a, b, c, d\}$, $Y = \{1, 2, 3\}$ with topologies $\tau = \{x, \phi, \{a\}\}$, $J = \{y, \phi, \{2\}\}$ respectively, then.

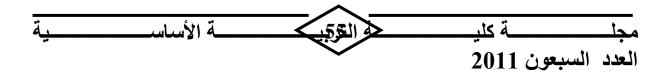
SO $(X) = \{X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, d\}, \{a, d, b\}, \{a, d, c\}\}$ SO $(Y) = \{y, \phi, \{1, 2\}, \{2\}, \{2, 3\}\}$, define *F*: $X \rightarrow Y$ by *F* $(a) = \{1\}$, *F* $(b) = \{3\}, F(c) = F(d) = \{2\}$ then *F* has s-closed graph but *F* is not scontinuous.

In the following result we give sufficient conditions for a multifunction with s- closed graph to be $\bar{s}.s.c.$.

4.5. Theorem.

Let *X* be extremely disconnected space and $F: X \to Y$ be

s-subcontinuous multifunction which has an s-closed graph. Then F is $\overline{s.s.c.}$.



Proof:

Let $B \subset Y$ be closed and $x_0 \in sCl(F(B))$, then by Theorem 2.8, there is a net $\{x_n\}$ in F(B) which s-converges to x_0 . Let $\{y_n\}$ be a net in B such that $y_n \in F(x_n)$ for each n. Since F is s- subcontinuous, there is an s-convergent subnet $y_{n_m} \xrightarrow{s} y_0 \in B$. If $y_0 \notin F(x_0)$ then $(x_0, y_0) \notin G_F$, but G_F is s-closed, so there are s-open sets $U \subset X$ and $V \subset Y$ such that $(x_0, y_0) \in U \times V$ and $(U \times V) \cap G_F = \phi$, since $x_n \xrightarrow{s} x_0$, and $y_{n_m} \xrightarrow{s} y_0$. Hence by Theorem 2.1, $x_n \to x_0$, and $y_{n_m} \to y_0$. Thus there is n_m such that $x_{n_m} \in U$ and $y_{m_n} \in V$ which is a contradiction. Thus $y_0 \in F(x_0)$ and $x_0 \in F(A)$. Hence F is $\overline{s}.s.c$.

The following result is obtained from the proof of the above theorem.

4.6. Corollary.

Let *X* be extremely disconnected space and $F: X \to Y$ be an s-subcontinuous multifunction with s-closed graph. Let $x_n \xrightarrow{s} x_0$ and $\{y_n\}$ be a net such that $y_n \in F(x_n)$ for each *n*. If $y_n \xrightarrow{s} y_0$ then $y_0 \in F(x_0)$.

If we assume that *Y* is regular in Theorem 4.5, then

4.7. Theorem.

If $F: X \to Y$ is a point closed $\overline{s}.s.c.$ and Y is a regular space. Then F has an s-closed graph.

Proof:

Suppose $(x, y) \notin G_F$ then $y \notin F(x)$. But *F* is point closed, so F(x) is closed. Since *Y* is regular, there are *U*, *V* open in *Y* such that $y \in U$, $F(x) \subset V$ and $U \cap V = \phi$. Since *F* is $(\overline{s.s.c.})$, there is $W \in SO(X)$ such that $x \in W$ and $F(W) \subset V$. Thus $(x, y) \in W \times U$ and $(W \times U) \cap G_F = \phi$. Hence $(x, y) \notin sCl$ (G_F) . Therefore G_F is s-closed.

REFERENCES

- [1] C.Berge, "Espaces topologiques functions multivoques "Dunod, Paris 1959.
- [2] D.Charles, "Semi Convergence and Semi Compactness" Indian J.Mech. Math.No.1, 19(1981), P.11-17.
- [3] S.G. Crossley and S.K Hildebrand, "Semi Closed Sets and Semi –Continuity in Topological Space "Texas J. Sci. 22 (2+3) (1971), p.123-126.
- [4] R.F. Dickman " θ perfect and θ -absolutely closed functions" Illinois J. math.21 (1977), 42-60.
- [5] R.V Fuller "Relations among Continuous and Various Noncontinuous functions, Pacific J.Math. 25(1968) P. 495- 509.
- [6] N. Levine," Semi Open Sets and Semi Continuity in Topological

Spaces "Amer. math, monthly, 70 (1963) 36-41.

- [7] O.Njastad "On Some Class of Nearly Open Sets "Pacific J. of math. No.3, 15(1965), 961-970.
- [8] V.Popa, "Multifunction Semi Continuous" Rev Romaine Math. Pure Appl. 27(1982). 807-815.
- [9] R.E. Smithson,"Subcontinuity for Multifunctions "Pacific J.Math. 61 (1975), 283-288.

