The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)

Lemia Abd Alameer Hadi

Abstract

: This paper finds the Artin characters and Artin exponent depending on the character table and conjugacy classes of projective special linear group PSL $\left(2, \mathrm{P}^{\mathrm{k}}\right)$.Then we prove that Artin exponent of PSL $\left(2, \mathrm{P}^{k}\right)$ is equal to \mathbf{p}^{k-1} where P is a prime number, $p=3$ and $k>0$. Key words : Character table, Artin character, Artin exponent, PSL (2, P^{k}).

\section*{1. Introduction:}

The Artin Exponent induced from cyclic subgroups of finite groups was studied extensively by Lam.T in [7]. A Burnside ring theoretic version of the results in [lam] for p- groups was given in [3].Here we shall be interested in looking at the Artin exponent induced from the cyclic subgroups of finite projective special linear group $\left(2, \mathrm{p}^{\mathrm{k}}\right)$. After we construct the ordinary character table of the finite projective special linear groups is derived as well.

In section two we take a further step to find the Artin character and Artin exponent of projective special linear group PSL $\left(2, p^{k}\right)$ where $p=3$, $\mathrm{k}>0$.

In section three we take some particular examples.

2. Basic Concepts and Theorems

In this section the mian information of PSL ($2, \mathrm{p}^{\mathrm{k}}$) are introduced:
Definition 1.1[8,2] :The projective general linear group PGL (n, f) an projective special linear group PSL (n, f) are the quotients of GL (n, f) and $\operatorname{SL}(\mathrm{n}, \mathrm{f})$ respectively.
$\operatorname{PGL}(\mathrm{n}, \mathrm{f})=\frac{\operatorname{GL}(\mathrm{n}, \mathrm{f})}{\mathrm{Z}(\operatorname{GL}(\mathrm{n}, \mathrm{f}))} \quad ; \operatorname{PSL}(\mathrm{n}, \mathrm{f})=\frac{\operatorname{SL}(\mathrm{n}, \mathrm{f})}{\mathrm{Z}(\mathrm{SL}(\mathrm{n}, \mathrm{f}))}$
Theorem 1.2[1,6] :
(i) The group $\operatorname{PSL}\left(2, \mathrm{p}^{\mathrm{k}}\right)$ is simple for $\mathrm{p}^{\mathrm{k}}>3$.

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)
Lemia Abd Alameer Hadi
Lemma1.3[1,2]: $\operatorname{PSL}\left(2, P^{k}\right)$ has exactly $\left(2 P^{k}+10\right) / 4$ conjugacy classes $c_{(z) g} \in \operatorname{PSL}\left(2, P^{k}\right)$. For $^{P^{k} \equiv+1(\bmod 4): ~}$
Table(1):

$<z>g$	C_{g}	$\left\|C_{g}\right\|$	$\left\|C_{G}(g)\right\|$
$<z>$	$C_{\ll \gg}$	1	$P^{k}\left(P^{2 k}-1\right) / 2$
$<z>c$	$C_{\ll>0}$	$\left(P^{2 k}-1\right) / 2$	P^{k}
$<z>d$	$c_{\ll>d}$	$\left(P^{2 k}-1\right) / 2$	P^{k}
$<z>a^{l}$	$C_{<z>a^{1}}$	$P^{k}\left(P^{k}+1\right)$	$\left(P^{k}-1\right) / 2$
$<z>a^{\left(p^{k}-1\right) / 4}$	$C_{\left\langle\langle \rangle \mathrm{a}^{\left(P^{\mathrm{k}}-1\right) / 4}\right.}$	$P^{k}\left(P^{k}+1\right) / 2$	$\left(P^{k}-1\right)$
$<z>b^{m}$	$C_{<z>b^{m}}$	$P^{k}\left(P^{k}-1\right)$	$\left(P^{k}+1\right) / 2$

where ${ }^{1 \leq l \leq\left(P^{k}-5\right) / 4}$ and $1 \leq m \leq\left(P^{k}-1\right) / 4$
For ${ }^{P^{k}} \equiv-1(\bmod 4)$:
Table (2):

$<z>g$	C_{g}	$\left\|C_{g}\right\|$	$\left\|C_{G}(g)\right\|$
$<z>$	$C_{<z>}$	1	$P^{k}\left(P^{2 k}-1\right) / 2$
$<z>c$	$C_{<z>0}$	$\left(P^{2 k}-1\right) / 2$	P^{k}
$<z>d$	$C_{<\gg d}$	$\left(P^{2 k}-1\right) / 2$	P^{k}
$<z>a^{l}$	$C_{<z>a^{l}}$	$P^{k}\left(P^{k}+1\right)$	$\left(P^{k}-1\right) / 2$
$<z>b^{m}$	$C_{<z>b^{m}}$	$P^{k}\left(P^{k}-1\right)$	$\left(P^{k}+1\right) / 2$
$<z>b^{\left(P^{k}+1\right) / 4}$	$C_{<\gg b^{\left(P^{k}-1\right) / 4}}$	$P^{k}\left(P^{k}+1\right) / 2$	$\left(P^{k}-1\right)$

where ${ }^{1 \leq l \leq\left(P^{k}-3\right) / 4}$ and $1 \leq m \leq\left(P^{k}-3\right) / 4$
3. The mian results

In this section we shall give our results about the Artin exponent $\mathrm{a}(\mathrm{G})$ of the finite special linear group $\operatorname{PSL}\left(2, \mathrm{P}^{\mathrm{k}}\right), \mathrm{k}$ is natural number, $\mathrm{k}>0$.

Theorem 3.1

Let $\mathrm{G}=\mathrm{PSL}\left(2, \mathrm{P}^{\mathrm{k}}\right), \mathrm{k}=$ natural, $\mathrm{k}>0$. Then $\mathrm{a}(\mathrm{G})=3^{\mathrm{k}-1}$ and the table of characters induced from the characters of all its cyclic subgroups.
For $\mathrm{P}^{\mathrm{k}}+1(\bmod 4)$

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)

Lemia Abd Alameer Hadi
Table (3):

$<\mathrm{z}>\mathrm{g}$	$<\mathrm{z}>$	$<\mathrm{z}>\mathrm{C}$	$<\mathrm{z}>\mathrm{d}$	$\left\langle\mathrm{z}>\mathrm{a}\left(\mathrm{P}^{\mathrm{k}}-\right.\right.$ $1) / 4$	a^{ℓ}	b^{m}
$\left\|\mathrm{C}_{(\mathrm{g})}\right\|$	1	$\left(\mathrm{P}^{2 k}-\right.$ $1) / 2$	$\left(\mathrm{P}^{2 \mathrm{k}}-\right.$ $1) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)$
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	P^{k}	P^{k}	$\left(\mathrm{P}^{\mathrm{k}}-1\right)$	$\left(\mathrm{P}^{\mathrm{k}}-1\right) / 2$	$\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$
Q_{1}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 k}-1\right) / 2$	0	0	0	0	0
Q_{2}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2 \mathrm{P}$	$-\mathrm{P}^{\mathrm{k}} / \mathrm{P}$	0	0	0	0
Q_{3}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 k}-1\right) / 2 \mathrm{P}^{2}$	0	$-\mathrm{P}^{\mathrm{k}} / \mathrm{P}^{2}$	0	0	0
Q_{4}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}+1\right) / 2$	0	0	-1	0	0
Q_{5}	$\ell\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)\right)$	0	0	0	-1	0
Q_{6}	$\mathrm{M}\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)\right)$	0	0	0	0	-1

where $1 \leq \ell \leq\left(\mathrm{P}^{\mathrm{k}}-5\right) / 4$ and $1 \leq \mathrm{m} \leq\left(\mathrm{P}^{\mathrm{k}}-1\right) / 4$
Proof:
$\left|\operatorname{PSL}\left(2, \mathrm{P}^{\mathrm{k}}\right)\right|=\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right)$
(by lemma (1.2))
From theorem (1.3), $\mathrm{G}=\mathrm{PSL}\left(2,3^{\mathrm{k}}\right)$ has exactly $\left(3^{\mathrm{k}}+1\right)$ cojugacy classes C_{g} for $\mathrm{g} \in \mathrm{G}$.
ForP ${ }^{\mathrm{k} \equiv}+1(\bmod 4)$
Table (4):

$\langle\mathrm{z}\rangle \mathrm{g}$	$\langle\mathrm{z}\rangle$	$\langle\mathrm{z}\rangle \mathrm{C}$	$\langle\mathrm{z}\rangle \mathrm{d}$	$\langle\mathrm{z}\rangle \mathrm{a}\left(\mathrm{P}^{\mathrm{k}}-1\right) / 4$	a^{l}	b^{m}
$\left\|\mathrm{C}_{(\mathrm{g}}\right\|$	1	$\left(\mathrm{P}^{2 k}-1\right) / 2$	$\left(\mathrm{P}^{2 k}-1\right) / 2$	$\mathrm{P}^{k}\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)$	$\left.\mathrm{P}^{\mathrm{k}} \mathrm{P}^{\mathrm{k}}-1\right)$
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 k}-1\right) / 2$	P^{k}	P^{k}	$\left(\mathrm{P}^{k}-1\right)$	$\left(\mathrm{P}^{k}-1\right) / 2$	$\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$

where: $1 \leq \ell \leq\left(\mathrm{P}^{\mathrm{k}}-5\right) / 4$ and $1 \leq \mathrm{m} \leq\left(\mathrm{P}^{\mathrm{k}}-1\right) / 4$
By the definition of inducing we obtained the induced characters $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, $\mathrm{Q}_{3}, \mathrm{Q}_{4}, \mathrm{Q}_{5}$ and $\mathrm{Q}_{6} \mathrm{ofPSL}\left(2, \mathrm{P}^{\mathrm{k}}\right)$ from the characters of all cyclic subgroups[9].
Table (5):

$<\mathrm{z}>\mathrm{g}$	$<\mathrm{z}>$	$<\mathrm{z}>\mathrm{C}$	$<\mathrm{z}>\mathrm{d}$	$<\mathrm{z}>\mathrm{a}\left(\mathrm{P}^{\mathrm{k}}-\right.$ $1) / 4$	a^{ℓ}	b^{m}
Q_{1}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	0	0	0	0	0
Q_{2}	$\mathrm{P}^{\mathrm{k}-1}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	$-\mathrm{P}^{\mathrm{k}-1}$	0	0	0	0
Q_{3}	$\mathrm{P}^{\mathrm{k}-2}\left(\mathrm{P}^{2 k}-1\right) / 2$	0	$-\mathrm{P}^{\mathrm{k}-2}$	0	0	0
Q_{4}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$	0	0	-1	0	0
Q_{5}	$\ell\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)\right)$	0	0	0	-1	0
Q_{6}	$\mathrm{~m}\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)\right)$	0	0	0	0	-1

Then we have table (3)
By multiply Q_{6} by -1 we get: $-\mathrm{m}\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)\right)$, by multiply Q_{5} by -1 we get: $\ell\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)\right)$
By multiply Q_{4} by -1 we get: $-\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}+1\right) / 2$, by multiply Q_{3} by -1 we get: $\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2 \mathrm{P}^{2}$

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)
Lemia Abd Alameer Hadi
$\overline{\overline{B y} \text { multiply } \mathrm{Q}_{2} \text { by }-1 \text { we get: }-\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2 \mathrm{P} \text {, and then adding the result to }}$ $\mathrm{Q}_{1}=\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$ we get:
$\frac{-P^{k}}{4}\left(P^{k}-1\right)\left(P^{k}+1\right)-\frac{P^{k}}{4}\left(P^{k}-5\right)\left(P^{k}-1\right)-\frac{P^{k}}{2}\left(P^{k}+1\right)-\left(P^{2 k}-1\right)+\frac{P^{k}}{2}\left(P^{2 K}-1\right)$
$=\frac{-P^{k}}{4}\left(P^{k}-1\right)\left(P^{k}+1+P^{k}-5\right)-\frac{P^{k}}{2}\left(P^{k}+1\right)-\left(P^{2 k}-1\right)+\frac{P^{k}}{2}\left(P^{2 k}-1\right)$
$=\frac{-P^{k}}{4}\left(P^{k}-1\right)\left(2 P^{k}-4\right)-\frac{P^{k}}{2}\left(P^{k}+1\right)-\left(P^{2 k}-1\right)+\frac{P^{k}}{2}\left(P^{2 k}-1\right)$
$=\frac{-P^{k}}{2}\left(P^{k}-1\right)\left(P^{k}-2\right)-\frac{P^{k}}{2}\left(P^{k}+1\right)-\left(P^{2 k}-1\right)+\frac{P^{k}}{2}\left(P^{2 k}-1\right)$
$=\frac{-P^{k}}{2}\left(P^{2 k}-3 P^{k}-2\right)-\frac{P^{2 k}}{2}-\frac{P^{k}}{2}-P^{2 k}+1+\frac{P^{3 k}}{2}-\frac{P^{k}}{2}$
$=\frac{-P^{3 k}}{2}+\frac{3}{2} P^{2 k}+P^{k}-\frac{P^{2 k}}{2}-\frac{P^{k}}{2}-P^{2 k}+\frac{P^{3 k}}{2}-\frac{P^{k}}{2}+1=1$

Theorem 3.2

Let $\mathrm{G}=\operatorname{PSL}\left(2, \mathrm{P}^{\mathrm{k}}\right), \mathrm{k}=$ natural, $\mathrm{k}>0$. Then $\mathrm{a}(\mathrm{G})=3^{\mathrm{k}-1}$ and the table of characters induced from the characters of all its cyclic subgroups.
For $\mathrm{P}^{\mathrm{k}}=-1(\bmod 4)$
Table (6)

$\langle\mathrm{z}>\mathrm{g}$	$\langle\mathrm{z}>$	$\langle\mathrm{z}>\mathrm{C}$	$\langle\mathrm{z}>\mathrm{d}$	$\mathrm{b}\left(\mathrm{P}^{\mathrm{k}}+1\right) / 4$	a^{l}	b^{m}
$\left\|\mathrm{C}_{(\mathrm{g}}\right\|$	1	$\left(\mathrm{P}^{2 k}-1\right) / 2$	$\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)$
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	P^{k}	P^{k}	$\left(\mathrm{P}^{\mathrm{k}}+1\right)$	$\left(\mathrm{P}^{\mathrm{k}}-1\right) / 2$	$\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$
Q_{1}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 k}-1\right) / 2$	0	0	0	0	0
Q_{2}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 k}-1\right) / 2$	$-\mathrm{P}^{\mathrm{k}-1}$	0	0	0	0
Q_{3}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 k}-1\right) / 2$	0	$-\mathrm{P}^{\mathrm{k}-2}$	0	0	0
Q_{4}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}+1\right) / 2$	0	0	-1	0	0
Q_{5}	$\ell\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)\right)$	0	0	0	-1	0
Q_{6}	$\mathrm{~m}\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)\right)$	0	0	0	0	-1

where $1 \leq \ell \leq\left(\mathrm{P}^{\mathrm{k}}-3\right) / 4$ and $1 \leq \mathrm{m} \leq\left(\mathrm{P}^{\mathrm{k}}-3\right) / 4$

Proof:

$\left|\operatorname{PSL}\left(2, \mathrm{P}^{\mathrm{k}}\right)\right|=\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) \quad$ (by lemma (1.2))
From theorem (1.3), $\mathrm{G}=\operatorname{PSL}\left(2,3^{k}\right)$ has exactly $\left(3^{k}+1\right)$ cojugacy classes C_{g} for $\mathrm{g} \in \mathrm{G}$.
For $\mathrm{P}^{\mathrm{k}}=-1(\bmod 4)$
Table (7)

$\langle\mathrm{z}\rangle \mathrm{g}$	$\langle\mathrm{z}\rangle$	$\langle\mathrm{z}\rangle \mathrm{C}$	$\langle\mathrm{z}\rangle \mathrm{d}$	$\mathrm{b}\left(\mathrm{P}^{\mathrm{k}}+1\right) / 4$	a^{l}	b^{m}
$\left\|\mathrm{C}_{(\mathrm{g}}\right\|$	1	$\left(\mathrm{P}^{2 k}-1\right) / 2$	$\left(\mathrm{P}^{2 k}-1\right) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right) / 2$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)$
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	P^{k}	P^{k}	$\left(\mathrm{P}^{\mathrm{k}}+1\right)$	$\left(\mathrm{P}^{\mathrm{k}}-1\right) / 2$	$\left(\mathrm{P}^{\mathrm{k}}+1\right) / 2$

where: $1 \leq \ell \leq\left(\mathrm{P}^{\mathrm{k}}-3\right) / 4$ and $1 \leq \mathrm{m} \leq\left(\mathrm{P}^{\mathrm{k}}-3\right) / 4$

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)
Lemia Abd Alameer Hadi
$\overline{\text { By the definition of inducing we obtained the induced characters } \mathrm{Q}_{1}, \mathrm{Q}_{2}}$, $\mathrm{Q}_{3}, \mathrm{Q}_{4}, \mathrm{Q}_{5}$ and Q_{6} of $\operatorname{PSL}\left(2, \mathrm{P}^{\mathrm{k}}\right)$ from the characters of all cyclic subgroups.
Table (8)

$<\mathrm{z}>\mathrm{g}$	$\langle\mathrm{z}>$	$\langle\mathrm{z}>\mathrm{C}$	$\langle\mathrm{z}>\mathrm{d}$	$\mathrm{b}\left(\mathrm{P}^{\mathrm{k}}+1\right) / 4$	a^{ℓ}	b^{m}
Q_{1}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	0	0	0	0	0
Q_{2}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	$-\mathrm{P}^{\mathrm{k}-1}$	0	0	0	0
Q_{3}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$	0	$-\mathrm{P}^{\mathrm{k}-2}$	0	0	0
Q_{4}	$\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}+1\right) / 2$	0	0	-1	0	0
Q_{5}	$\ell\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)\right)$	0	0	0	-1	0
Q_{6}	$\mathrm{~m}\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)\right)$	0	0	0	0	-1

Then we have table (6)
By multiply Q_{6} by -1 we get: $-\mathrm{m}\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}-1\right)\right)$, by multiply Q_{5} by -1 we get: $\ell\left(\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{k}}+1\right)\right)$,
by multiply Q_{4} by -1 we get: $-\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}+1\right) / 2$, by multiply Q_{3} by -1 we get: $\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$,
by multiply Q_{2} by -1 we get: $-\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$, and then adding the result to $\mathrm{Q}_{1}=\mathrm{P}^{\mathrm{k}}\left(\mathrm{P}^{2 \mathrm{k}}-1\right) / 2$ we get:
$\frac{-P^{k}}{4}\left(P^{k}-3\right)\left(P^{k}-1\right)-\frac{P^{k}}{4}\left(p^{k}-3\right)\left(p^{k}+1\right)-\frac{P^{k}\left(P^{k}-1\right)}{2}-\frac{\left(P^{2 k}-1\right)}{2}+\frac{p^{k}\left(P^{2 k}-1\right)}{2}$
$=\frac{-P^{k}}{4}\left(P^{k}-3\right)\left(2 P^{k}\right)-\frac{P^{k}}{2}\left(P^{k}-1\right)+\frac{P^{k}}{2}\left(p^{2 k}-1\right)-\left(P^{2 k}-1\right)$
$=\frac{-P^{2 k}}{2}\left(P^{k}-3\right)-\frac{P^{k}}{2}\left(P^{k}-1\right)+\frac{P^{3 k}}{2}-\frac{P^{k}}{2}-P^{2 k}+1$
$=\frac{-p^{2 \mathrm{Ex}}}{2}+\frac{3 p^{2 \pi}}{2}-\frac{p^{2 k}}{2}+\frac{p^{k}}{2}+\frac{p^{\mathrm{BK}}}{2}-\frac{p^{k}}{2}-P^{2 k}+1=1$.

4. Some Examples

To motivate the general algebraic procedure we take some particular examples :
1)

$$
|\mathrm{PSL}(2,3)|=\frac{1}{2} \mathrm{P}^{\mathrm{K}}\left(\mathrm{P}^{\mathrm{K}}-1\right)=\frac{1}{2} 3(8)=12
$$

The cojugacy classes is $\frac{2 \mathrm{P}^{\mathrm{K}}+10}{4}=\frac{16}{4}=4$, For $\mathrm{P}^{\mathrm{K}} \equiv-1(\bmod 4)$
\Rightarrow Artin's character are
Table (9):

$\langle z\rangle g$	$\langle z\rangle$	$\langle z\rangle C$	$\langle z\rangle \mathrm{d}^{1}$	$\mathrm{~b}^{1}$
$\left\|\mathrm{C}_{\mathrm{g}}\right\|$	1	4	4	3
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	12	3	3	4
Q_{1}	12	0	0	0
Q_{2}	4	-1	0	0
Q_{3}	4	0	-1	0

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)
.......
Lemia Abd Alameer Hadi

Q_{4}	3	0		-1
where ${ }^{\ell=1}, \mathrm{~m}=1$				
$\Rightarrow-\mathrm{Q}_{4}$	-3	0	0	1
$-\mathrm{Q}_{3}$	-4	0	1	0
$-\mathrm{Q}_{2}$	-4	1	0	0
	-11	1	1	1
$+\mathrm{Q}_{1}$	12	0	0	0
	1	1	1	1

$a(\operatorname{PSL}(2,3))=1=3=3^{\mathrm{k}-1}$
2)

The cojugacy classes are $=\frac{2 * 9+10}{4}=\frac{28}{4}=7$ For $\mathrm{P}^{\mathrm{K}} \equiv+1(\bmod 4)$
\Rightarrow Artin's characters are
Table (10):

$\langle z\rangle g$	$\langle z\rangle$	$\langle z\rangle C$	$\langle z\rangle \mathrm{d}$	$\langle z\rangle \mathrm{a}^{2}$	a^{I}	b^{L}	b^{2}
$\left\|\mathrm{C}_{\mathrm{g}}\right\|$	1	40	40	45	90	72	72
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	360	9	9	4	8	5	5
Q_{1}	360	0	0	0	0	0	0
Q_{2}	120	-3	0	0	0	0	0
Q_{3}	40	0	-1	0	0	0	0
Q_{4}	45	0	0	-1	0	0	0
Q_{5}	90	0	0	0	-1	0	0
Q_{6}	144	0	0	0	0	-1	-1

$\Rightarrow-\mathrm{Q}_{6}=$	-144	0	0	0	0	-1	1
$-\mathrm{Q}_{5}=$	-90	0	0	0	1	1	1
$-\mathrm{Q}_{4}=$	-45	0	0	1	1	1	1
$-\mathrm{Q}_{3}=$	-40	0	1	1	1	1	1
$-\frac{1}{3} \mathbf{Q}_{\mathbf{2}}=$	-40	1	0	0	0	0	0
$+\mathrm{Q}_{1}$	-359	1	1	1	1	1	1
	360	0	0	0	0	0	0

3) $\left|\operatorname{PSL}\left(2,{ }^{3}\right)\right|=\frac{\frac{2187(4782968)}{2}}{2}=5930175508$ Cons classes $=\frac{\frac{2 \& 2187}{4}}{4}=$ 1096
For ${ }^{3^{7}} \equiv-1$ mode 4
where $1 \leq \ell \leq \frac{2184}{4}=546,1 \leq \mathrm{m} \leq{ }^{\frac{2184}{4}}=546,\langle\mathrm{z}\rangle \mathrm{b}^{547}$

Table (11):

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)

Lemia Abd Alameer Hadi

<z>g	<z>	<z>C	< z >d	<z>b ${ }^{547}$	$\mathrm{a}^{1} \ldots \ldots$.	a^{546}	b^{1}.	b^{546}
$\left\|\mathrm{C}_{\mathrm{g}}\right\|$	1	2391484	2391484	2390391	4785156	4785156	4780782	4780782
$\left\|\mathrm{C}_{\mathrm{G}}(\mathrm{g})\right\|$	5230175508	2187	2187	2188	1093.......	1093	1094	1094
Q_{1}	5230175508	0	0	0	0	0	0.	0
Q_{2}	1743391836	-729	0	0	0	0	0	0
Q_{3}	581130612	0	-243	0	0	0	0	0
Q_{4}	2390391	0	0	-1	0.	0	0	0
Q5	2612695176	0	0	0	-1.	-1	0	0
Q_{6}	2610306972	0	0	0	0.	0	-1.	-1
- Q_{6}	-2610306972	0	0	0	$0 \ldots \ldots \ldots \ldots \ldots \ldots . .$.		$1 . . . \ldots \ldots \ldots \ldots \ldots .1$	
- Q_{5}	-2612695176	0	0	0	1................ 1			
- Q_{4}	-2390391	0	0	1	0................. 0			
$\frac{-1}{{ }^{243}} \mathrm{Q}_{3}$	$\begin{gathered} \left(\frac{-1}{243}\right)_{58113} \\ 0612 \end{gathered}$	0	$\left(\frac{243}{243}\right)$	0				
$\frac{-1}{{ }^{729}} \mathrm{Q}_{2}$	$\begin{gathered} \left(\frac{-1}{729}\right)_{17433} \\ 91836 \end{gathered}$	$\left(\frac{729}{729}\right)$	0	0	$0 \ldots \ldots \ldots \ldots \ldots . .$.		0................ 0	
$\begin{aligned} & \Rightarrow \\ & +Q_{1} \end{aligned}$	$\begin{aligned} & -5230175507 \\ & +523017550 \\ & 8 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \ldots \ldots . \end{aligned}$			
	1	1	$\Rightarrow \mathrm{a}\left(\operatorname{PSL}\left(2, \mathrm{P}^{7}\right)\right)=729=3^{6}=3^{K-1}$				1................ 1	

5.Discussions

The Artin exponent and Artin characters for several groups of PSL (2, 3^{k}) are calculated, and we find that:
For $\mathrm{k}=1$, For $\mathrm{P}^{\mathrm{K}} \equiv-1(\bmod 4)$, Artin exponent of $\operatorname{PSL}(2,3)=1=3^{0}=3^{\mathrm{k}-1}$
For $\mathrm{k}=2$, For $\mathrm{P}^{\mathrm{K}} \equiv+1(\bmod 4)$, Artin exponent of $\operatorname{PSL}\left(2,3^{2}\right)=3=3^{1}=3^{\mathrm{k}-1}$
For $\mathrm{k}=3$, For $\mathrm{P}^{\mathrm{K}} \equiv-1(\bmod 4)$, Artin exponent of $\operatorname{PSL}\left(2,3^{3}\right)=9=3^{2}=3^{\mathrm{k}-1}$
For $\mathrm{k}=4$, For $\mathrm{P}^{\mathrm{K}} \equiv+1(\bmod 4)$, Artin exponent of $\operatorname{PSL}\left(2,3^{4}\right)=27=3^{3}=3^{\mathrm{k}-1}$
For $\mathrm{k}=5$, For $\mathrm{P}^{\mathrm{K}} \equiv-1(\bmod 4)$, Artin exponent of $\operatorname{PSL}\left(2,3^{5}\right)=81=3^{4}=3^{\mathrm{k}-1}$
For $\mathrm{k}=6$, For $\mathrm{P}^{\mathrm{K}} \equiv+1(\bmod 4)$, Artin exponent of $\operatorname{PSL}\left(2,3^{6}\right)=243=3^{5}=3^{\mathrm{k}-1}$
For $\mathrm{k}=7$, For $\mathrm{P}^{\mathrm{K}} \equiv-1(\bmod 4)$, Artin exponent of $\operatorname{PSL}\left(2,3^{7}\right)=729=3^{6}=3^{\mathrm{k}-1}$
Hence, in general Artin exponent of projective special linear group PSL (2, p^{k}) where $\mathrm{p}=3, \mathrm{k}>0$ is equal to $3^{\mathrm{k}-1}$.

The Artin Exponent of Projective Special Linear Group PSL (2, $\mathbf{P}^{\mathbf{k}}$)

Lemia Abd Alameer Hadi

References

[1] Kathrin E. Gehles, "Ordinary Characters of Finite Special Linear Groups", School of Mathematics and Statistics, University of St Andrews, 2002.
[2] M. R. Darafsheh, and M. R. Pournaki, "Computation of The Dimension of Symmettry Classes of Tensors Associated with the Finite Two DimentionalProgective Special Linear Group", 1995.
[3] K. K. Nwabueze, "Some Definition of TheArtin Exponent of Finite Groups", MSRI and Department of Maths and Computer Science, University of Antwerpen (UIA), 2610 Wileijk, BBelgium, 1996.
[4] K. Yamauchi, "Artin Exponent of Symmetric Groups and Alternation Groups", Bulletin of The Faculty of Education, Chiba University, Vol. 24, Part II, 1975.
[5] B. Fine, M. Kreuzer, and G. Rosenberger, "Faithful Real Representations of Cyclically Pinched One-Relator Groups", Vol. 3, pp. 1-8, 2014.
[6] Marcel Herzog, and David Wright, "Characterization of a Family of Simple Groups by Their Character Table", Vol. 24A, pp. 296-304, 1977.
[7] Lam T. "Artin Exponent of Finite Groups", Colombia University, NewYork, Jornal of Algebra, Vol. 9, pp. 94-119, 1968.
[8] William A. Simpson, "Irreducible Odd Representations of PSL(n,q)", Vol. 28, pp. 291-295, 1974.

PSL (2, Pk) أس ارتن للزمر الخطية الخاصة الأسقاطية

في هذا البحث تم إيجاد رمز ارتن وأس ارتن بالاعتماد على جـــول الرمـز العام والمجموعات الجزئية للزمر الخطية الخاصة الاهــقاطية

$$
\text { حيث إن P عدد أولي ويساوي 3, و K> } 0 .
$$

