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Abstract

This paper deals with the blow-up set of a semilinear heat equation
defined on a ball, with nonlinear boundary condition, where the reaction
term and the boundary term are powers of exponential types. In [9], under
some restricted assumption, it has been proved that, in case of, the
nonlinear terms are of exponential types without powers, the blow-up
occurs only on the boundary. Our aim is to extend that result, for some
regains of the powers those appear on the reaction and boundary terms.
1 Introduction

In this paper, we consider the initial -boundary problem:

(u; = Au+ e (x,t) € Br X (0,7),)
au
= — pqu

I =™ ) €dBex(07), L
u(x:{]) — uﬂ(x): X € BR:

\ J

where p=>=0,q>=0,A>=0, By is a ball in R", N is the outward
normal, u, IS nonnegative symmetric, nondecreasing, smooth function

satisfies the conditions

du

N eito, XEOBg..coovii (2)

Aug + AeP¥0 =0, Uy, (|x]) = 0,x € By, ... .... (3)
where 7 = /x2+x2 + - x2.

It is known that, the existence and uniqueness of local classical solutions
to this problem are guaranteed by the standard theory see [9],[5]. On the
other hand, the nontrivial solutions of this problem blow-up in finite time
and the blow-up set contains dBp, and that due to comparison principle,[7],
and the known blow-up results of problem where 4 = 0 (see[2]).

In [9], it has been proved that, the lower blow-up rate is obtained as follows

logc — ilng(?’ —t) < max,ep, ulx, t) ....... (4)
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where @ = max{p, q},

while the upper blow-up rate estimate takes the from
maX,e5, ulx,t) < logC — ilog(?’ —t)....... (5)

Moreover, for the special case, where p = g =1, and under some
restricted assumptions on 4, it was shown that blow-up occurs only on the
boundary.

In this paper, we shall extend some of these results showing that
the blow-up occurs only on the boundary, where
1<p=24q=1/2, and for some values of 4.

2 Preliminaries

In the rest of paper, we denote for simplicity u(x,t) = u(r,t).

The following lemma which has been proved in [9], shows some
properties of the classical solutions to problem (1).

Lemma 2.1. Let u be a classical solution to problem (1), where ug
satisfies the assumptions (2),(3). Then

1- u > 0, radial in B x (0, T),

2- u, =0, in[0,R] X [0,T).

3- U = 0in ER X (U,T)

3 Blow-up Set

In this section, we shall prove that, the blow-up of problem (1)
occurs only on the boundary, with restricted assumptions on p, g and A.
Theorem 3.1. Suppose that u is a classical solution to following
Problem:

U = Au + AeP™ (x,t) € Bg < (0, T),
C
u(e,x) = log——, (x,t) € 9Bz x (0,7),
u(x){]) = uo(x)r Xx € BR}

where n>1,1<p<2, g=1/2
Then for any 0 = a = R, and for some values of 4 such that

4AR*(n+1) = min{Z, 2 pmlluollo} (7)

¢’ RZ+aln+1)T
There exists a positive constant A such that,

u(t,x) < 103[A{R21_ Sl<o for 0<|x|<a<RO<t<T.
Proof
Let v(x)=A(R*—r*), r=|x[,0 =r =R,
z(x,t)=z(r t) = inBgp X (0,T),

1
log [wix)+B(T-1)]’
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wiiereB::D,Azﬂ. -

A direct calculation shows that

B
2 =)+ BT — D7
4rA(R* —1%)

T () + B(T — 1)

v +B(r-t)lsa(R?-3r2)]+164%r* (R2—r?)

o [w(x) +B(T—t)]2
Thus
n—1
Ty — Zpp — z, — AeP?

" [B —4A(n— 1)(R? —r3)][w(x) + B(T — t)]
- [v() + B(T— 1)
[4A(R? — 3r)][v(x) + B(T — )] + 167%v(x)
- [vC) + BT - )]

 [v(x) + B(T— 1)

- [B-44(n-1)(R*—r®)—44(R®-3r®)-16rlv(x) A
- [lwlx)+B(T-£)]2 [v(x) +B(T-£)]2
[B —4AR*n— 4AR*lv(x) — A
= =0
[v(x) + B(T —1)]?

Provided (T—t)=1/2, A(R*—r*)=<1/2,and
A

2 st 4AR*(n+1) = 4AR*(n+ 1) = 4AR*(n+ 1),........ (8)
where 0 <r =a < R.
So, zt—zw—ﬂ;lzr—leﬂz =0
Moreover, i

: = u(x,0), x € Bg,...(9)

[AR*+BT] —

z(x,0) = Iagm = log

Provided =>eule0) y e B,

[AR%+BT]

- ||uc:||oo
Or [AR*+BT] — € !
From condition (8), we have
1 - 1 _ 4(n + 1)

LAR* +~ BT] — 4(,?11‘3;1) 4+ g7 PBIRZ+ 4+ 1DT]

which leads to (9) is satisfied if
4(n+1)
B = e‘”’“—o“oﬂ

RZ+4(n+ 1T
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and

u(R,t) = log E{;_t;, > log—== > u(R,t) t € (0,T),....(10)

(T—)24
Provided B < %

Thus, (9) and (10) can be satisfied when the following condition is held

B = min 1 4Eﬂ+ lj g_HuD“m
- c'R2+4(n+ 1DT

From above and comparison principle [7], we obtain
z(x,t) = u(x,t), V(x,t) € B X (0,T)

Thus
u(t,x) < 1ng[m] <omfor 0<|x|<a<RO0<t<T.

From above theorem and the upper blow-up rate estimate (5), which
has been shown in [9], we conclude that, for 1 <p =2, g=1/2,and 4
satisfies (7), the blow-up of problem (1) occurs only on the boundary.
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