Proposed Approach for Key Generation Based on the RNA

Assit Prof. Dr.Alia Karim Abdul Hassan

Computer Science Depart- University of Technology

<u>Abstract</u>

Due to fundamental role of random key in the design of cryptography algorithms, a new method is proposed for generating random key based on the bases of RNA translation to protein chain. The proposed method accept a key sequence size(9,18,27,...) byte and generate key sequence with extended length appropriate with plain message length. The security strength of generated key is acceptable according to the results of statistical tests of randomness.

General Terms

cryptography, key sequence, randomness, RNA, DNA

Introduction

Cryptographic is learning mathematical technology related aspects of information security such as confidentiality, data integrity, and authentication entity, and data origin authentication, encryption is not the only tool to provide protection of information [1]. It is not surprising, came new types of Cryptographic shortly after the large-scale development of growth computer-mediated communication. and the of Internet technologies. In data and telecommunications, and there is a need Cryptographic when connecting through any broker era, which includes just about any network, on top of the Internet [2].

The security of encrypted data is entirely dependent on the strength of the encryption algorithm and the secret of the key [3]. In cryptography, the key is part of the information which determines the yield practical algorithm for Cryptographic cipher. Without the key, the algorithm does not have a result. In Cryptographic, key to making a special on from plain text to determine the encrypted text, or vice versa during decryption. Also used in other keys encryption algorithms, such as digital signature systems and message authentication codes [4].

To prevent the key from being guessed, keys need to be creat, in fact randomly and contain sufficient universe. Since random number one value can not be predicted, and the computers are not very good at producing truly random data. Instead, they rely on the pseudo-random number

مجلة كلية التربية الأساسية - 101 - المجلد 21- العدد 87- 2015

generator (PRNG), so it must be strong encryption with random seed values really [5].

Deoxyribo nucleic acids (DNA) computing is to solve computational problems with the help of biological and chemical processes on the method of DNA strand [6]. Since then compounded more and more researchers of a promising future for this area and start working on it. The use of computing DNA on the other hand is far from reality and the world of information security is the focus better on other encryption technology for new promising methods [7]. Ribo Nucleic Acid (RNA) is a copy of the DNA to come out to the cytoplasm to tell the cell what needs to be done in order to survive[8]. In this paper a proposed method to generate a random key using RNA computing technology.

Related Work

In [9] use chemical properties of the DNA sequences of the cipher text to encrypt data over public channel to add key extension and complexity. In[10] develop a secured symmetric key generation scheme which generates primary cipher and this primary cipher is then converted into final cipher using DNA sequences, so as to make it again more complicated in reading.

Key generation

Key generation is the process of generating keys for cryptographic. Keys can be created by a different techniques, such as using the output of random bit generator. Cryptographic keys needed to be generated within strong cryptographic modules. Random numbers required for key generation must be generated within the module that generates the key. The security strength (*randomness*) that can be supported by a key depends on the algorithm with which it is used, the size of the key, the process that generated the, and how the key was handled[11].

Deoxyribonucleic Acid (DNA)

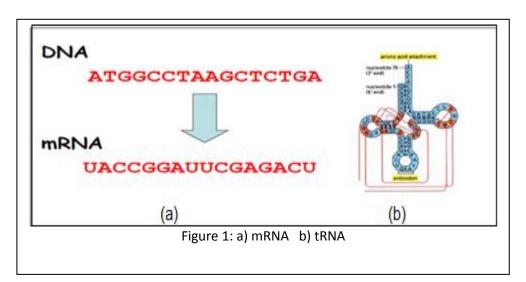
The DNA is a double-anti similar stranded helix of nucleotides is responsible for carrying the cell's genetic feature, "code" which generates proteins. The DNA strands contain a huge number oflinked nitrogen-based polymer nucleotides. The nucleotides consist of Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). The nucleotides only combine in C-G and T-A pairs. DNA chain is formed in a free phosphate (5'end) and in a free hydroxyl group(3'end) with 3' end of one strand pairs with the 5' end of the other [7]. For This reason5' CTGA 3'should not be confused with AGTC.

مجلة كلية التربية الأساسية - 102 - المجلد 21- العدد 87- 2015

Ribo-Nucleic Acid (RNA)

A DNA gene has he information for making the right polypeptide by the process:

DNA \rightarrow RNA \rightarrow Protein


For cell decoding, DNA is copied into **messenger RNA**(mRNA), called **transcript**. The ribonucleic acid, RNA, is distinguished from DNA for having different chemical composition, where pyrimidine uracil is usedinstead of thymine. [12]. RNA is a single-stranded molecule which contains the bases adenine (A), cytosine (C) and guanine (G) but not the thymine; instead, it contains uracil (U) base. The messenger RNA (mRNA) and transfer RNA (tRNA) are two different types of RNA.

Messenger RNA (mRNA)

The information stored in *mRNA* carries is utilized to make proteins; a copy of a gene(figure 1).

Transfer RNA (tRNA)

TRNA, an adaptor in protein synthesis, turns around to formribonucleotides which combine withothers within the same chain tomake3 loops (Fig. 1b tRNA[13,14].

Protein Synthesis

Protein synthesis procedure as the following :First, the information to code for a single amino acid, are made of three nucleotides (a triplet). This information is first *transcribed* into the messenger RNA (mRNA), which has a series of bases complementary with DNA, from which it is copied. In fact, mRNA, like DNA has only four bases, whereas proteins may contain up to 20 amino acids. Permutation of the 4 bases yield 4³ or

مجلة كلية التربية الأساسية - 103 - المجلد 21- العدد 87- 2015

64 triplets. The mRNA in turn serves as an intermediary that contains the same genetic information and *translates* this information into the amino acid sequence of the protein as shown in figure 2.

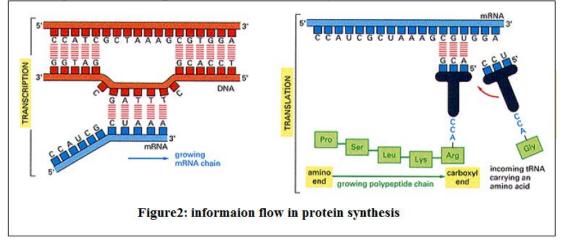
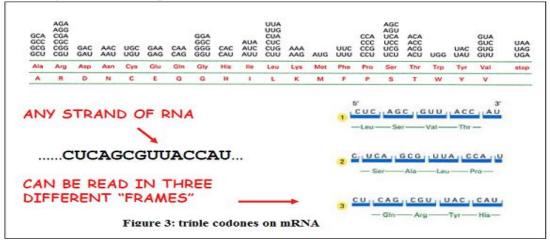



Figure3 illustrates many RNA codons which may code for a single amino acid. The leucine codon for instance could be coded by CUU, CUC, and CUA. The base occupying the triplet's third position is the only difference in synonymous codons. For coding, the codon's first two bases are the important ones in coding. For this reason, synchronous third base codons exchange could take place unnoticed.

The mRNA translation to protein starts on the 5' end of the mRNA and codes for the beginning of a methionine amino acid. The starting action finishes when tRNA occupies one of the two binding ribosome sites. In figure 2, the next tRNA binds to the A site and all available tRNAs will go toward the site but only thetRNA whose anticodon is complementary to the codon of the A site will attach on the mRNA. Joining the amino acids together is described as peptide connection and this will go on until a "stop" codon (UAA, UGA, or UAG) endsthe process (Figure 2) [13,14].

مجلة كلية التربية الأساسية - 104 - المجلد 21- العدد 87- 2015

The Proposed Approach for Key Generation

a proposed method for secure key sequence generation based on the bases of RNA translation to protein chain. The proposed method accept a key sequence size(9,18,27,...) byte these bytes are first converted binary code then every 2 bit are converted to one nitrogenous base, in order to get the RNA strand using table (1), split RNA strand to a group of codons (3 nitrogenous bases). As describe each RNA codon can be coded to different amino acide this property is employed to expand the mRNA key sequence. In a proposed table (table 2) each anticodon have a sequence with 6-bit length because the number of codons in RNA is $64(2^{6}bits)$. In the table(2) several RNA codons may code for a single amino acid are grouped in a parenthesis(}), group size from 2 to 4. This property is used for expansion the key sequence. If the group size is 2 use both codons to extend the cipher text from one codoin to 2 and the bit sequence 12bit. If the group more than 2 codons for example if there is a GGU with code number 60 it can be choose one of its alternative of same group as GGC, GGA, GGG to be expand the cipher sequence (each 6-bit will expanded to 12-bit). Choosing one of the group is made by agreement between the sender and receiver.

Table(1):Convert bit sequence into mRNA nucleotides					
Bit sequence	mRNA Base				
00	А				
01	U				
10	С				
11	G				

The process of protein chain is begins with AUG that is used to start protein synthesis and stop when find end is (UAA or UAG or UGA) and the translation of all the (codons) found them to protein. to take advantage of this feature in this work by identifying (start and end codon) and calculate the number of the (codons), and take this number as the number and benefit from the work rotate right shift of) RNA strand, for example, if the number of codons equal to 4, between the start and end meaning that shift right rotate will 4 codons. This step provide the generated key sequence more randomness. The proposed method for key generation is described in the algorithm1, followed with example describe the algorithem1 steps trace.

Table (2):Coding Amino Acid Groups into bit sequence						
Decimal code	RNA code	Binary code based (6 bit)				
0	ר טטט	000000				
1	UUC _	000001				
2		000010				
3	UUG	000011				
4	CUU	000100				
5	CUC	000101				
6 7	CUA	000110 000111				
8		001000				
9	AUC J	001001				
10	AUA	001010				
11	AUG 🖵	001011				
12	GUU J	001100				
13	GUC	001101				
14	GUA	001110				
15	GUG	001111				
16		010000				
17	UCC	010001 010010				
18	UCA	010010				
20		010100				
20	CCC	010100				
22	CCA	010110				
23	CCG	010111				
24	ACU	011000				
25	ACC	011001				
26	ACA	011010				
27	ACG	011011				
28	GCU	011100				
29	GCC	011110				
30 31	GCA	011101 011111				
32		100000				
33		100001				
34		100010				
35		100011				
36	CAU	100100				
37	CAC	100101				
38		100110				
39		100111				
40 41		101000 101001				
41 42		101001				
42		101010				
44	GAU 7	101011				
45	GAC _	101101				
46	GAA)	101110				
40		101110				
47		110000				
49	UGC J	110001				
50	UGA	110010				
51	UGG J	110011				
52	CGU -	110100				
53	CGC	110101				
54	CGA	110110				
55		110111				
56	AGU	111000				
57	AGC J	111001				
58 49	AGA AGG	111010 111011				
60	GGU	111011				
61	GGC	111100				
62	GGA	111101				
63	GGG	111111				

1 - 1 المبلد 21- العدد 87

- 106 -

مجلة كلية التربية الأساسية

Proposed Approach for Key Generation Based on the RNA

Assit Prof. Dr.Alia Karim Abdul Hassan

Algorithm (1): proposed Key generation using RNA				
Input: Key sequence (characters, numbers)size (9 byte,18 byte,27				
byte,)				
Output: random key bit sequence with expanded size				
Begin				
Step1 :convert key sequence to binary sequence				
Step2: code each 2bit from the message binary sequence to RNA 4base				
using table(1).				
Step3: split RNA strand to a group of codons (3 nitrogenous bases)				
Step4: Extend each codon in RNA sequence by selecting another codon				
that belong to the same amino acid and appending them, according to table				
(2).				
Step5: Read RNA strand until find the AUG that is used to begin protein				
synthesis, count the number codons and stop when find end codon is				
(UAA or UAG or UGA)				
Step6: Apply rotate right shift on RNA strand based on the number of				
codons between start and end codon				
Step7: End				

Implementation and Experiment Results

This section illustrates the implementation of the proposed approach. The proposed approach was programmed using Visual c#.net 2008. Several examples executed :

Exampl1:

مجلة كلية التربية الأساسية - 107 - المجلد 21- العدد 87- 2015

UAGGUUGUCUGUUGCGCCGCUAUAAUGGGUGGAAGCAGUGAG GAAUAAUGAGUGGUUAGGAGAUAGUAAUGA

Step6: Target key (extended key generation)

Exampl2:

Key=Computer@

Step1 :Size of key =72

Step2: RNA

CODON=GAUCGGUCCGUCAAGCCCGCACGCCCUCUAGCAAUA Step3: Extend RNA CODON=

CUACUUGCCGCUAGGAGACAGCAAUUCUUUGGGGGGCCGUCGA GCGGCCGGAGGGGAUGACCGUCGAUAUUAC

Step4: Determine start and end codon =

Step5: SHIFT NUMBER = 0

CUACUUGCCGCUAGGAGACAGCAAUUCUUUGGGGGGCCGUCGA GCGGCCGGAGGGGAUGACCGUCGAUAUUAC

Step6: Target key (extended key generation)

Key strength evaluation

Statistical Tests of Randomness are used to check random property that a random sequence is likely to have. Useful statistical tests are four basic tests, and they are: Frequency test, Serial test, Poker test, Runs test [11]. The output of tests must be compared with passes values that illustrated in Table (3) to decide if the outputs of randomness tests are good for the sequences to pass. Randomness tests are applied on different key sizes: 72, 144, and 216 bits.

Proposed Approach for Key Generation Based on the RNA			
Assit Prof. Dr.Alia Karim Abdul Hassan			
Table(3): Randomness test with test values			

Table(3): Randomness test with test values							
Tests	Key1= 72bit	Key2= 144 bit	Key3= 216 bit	Pass Value			
Frequency test	1.224	1.082	1.366	≤3.84			
Run test	5.44	4.76	3.924	≤22.362			
Pokertest	9.04	7.56	9.34	≤11.1			
Serial test	0.94	1.46	5.2	≤5.99			

Conclusions

a proposed method for random key sequence generation based on the bases of RNA translation to protein chain. The proposed method accept a key sequence size(9,18,27,...) byte. Key sequence input the algorithm was significantly increased. This was because each character of the input message converted to a binary code of length 8 word from which pairs corresponding to RNA bases were created addition extension when each codon in RNA sequence by choosing another codon that belong to the same amino acid and appending them, according to a proposed table (2). The security strength of generated key is acceptable according to the results of statistical tests of randomness.

References

- S.G. Srikantaswamy, H.D Phaneendra.," A New Approach for Designing Cryptographic Systems based on Feistel Structure", International Journal on Computer Science and Engineering (IJCSE), ISSN: 0975-3397 Vol. 5 No. 01 Jan 2013. http://www. Ivsl.org.
- 2. J. Hsiao, T. Gulliver, "*MARC A New Block Cipher Algorithm*", Contemporary Engineering Sciences, Vol. 5, 2012, no. 6, 281 - 286.
- 3. W. Stallings, "*Cryptography and Network Security Principles and Practices*", third addition, 2003, Pearson Education, Inc.
- 4. H. Bidgoli, J. Wiley, "*Key* (*cryptography*)", The Internet Encyclopedia, 2004.
- 5. J. Knudsen, "Java Cryptography", O'Reilly Media, Inc., First Edition May 1998.
- K. Hammed, 'DNA Computation Based Approach for Enhanced Computing Power', International Journal of Emerging Sciences ISSN: 2222-4254 1(1) April 2011.
- Future in Our Genes? ", SANS Institute 2000 2002 As part of GIAC practical repository.<u>www.giac.org/paper/gsec/1617/dna.../102969</u>
- 8. Mrs. Rebello's ,'DNA notes'. www.nclark.net/DNA_RNA
- B. Bazli, D. Llewellyn-Jones, M. Merabti, 'Data Encryption in Communication Using DNA Sequences', the 15th annual PostGraguate symposium on the convergence on telecommicationa, networking, and broad casting, Liverpool, June, 2014.
- S. Javheri, R.Kulkarni, 'Secure Data communication and Cryptography based on, DNA based Message Encoding', International Journal of Computer Applications (0975 – 8887), Volume 98– No.16, July 2014
- E. Barker, A. Roginsky, ' *Recommendation for Cryptographic Key Generation* ', National Institute of Standards and Technology Special Publication 800-133 Natl. Inst. Stand. Technol. Spec. Publ. 800-133,

26 pages (December 2012)
-------------------------	---

- 12. P. Akkara, "<u>Applying DNA Self-assembly in Formal Language</u> <u>Theory</u>", MSc, University of Cincinnati, Engineering and Applied Science: Computer Engineering,2013
- S. Kumar , 'Concept of DNA & RNA', Anthropological Survey of India Manav Bhavan, Bogadi, Mysor <u>http://nsdl.niscair.res.in/.../PDF+5.2Concept+of+DNA</u>
- 14. http://www.nobelprize.org/educational/medicine/dna/b/translation/translation_process.html

مجلة كلية التربية الأساسية - 111 - المجلد 21- العدد 87- 2015

طريقة مقترحة لتوليد مفتاح بالاعتماد على RNA

الخلاصة

بسبب الدور الأساسي لل مفتاح العشوائي في تصميم خوارزميات التشفير ، ويقترح طريقة جديدة ل توليد مفتاح عشوائي على أساس قواعد الترجمة RNA ل سلسلة البروتين. الطريقة المقترحة تقبل حجم سلسلة مفتاح (9،18،27 ، ...) بايت وتوليد سلسلة مفاتيح مع بالطول المناسب لطول الرسالة . قوة أمن المفتاح المتولد بهذه الطريقة مقبولة وفقا ل نتائج الاختبارات الإحصائية العشوائية .