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Abstract 
This paper deals with the thirteenth order differential equations linear 

and nonlinear in boundary value problems by using the Modified Adomian 

Decomposition Method (MADM), the analytical results of the equations 

have been obtained in terms of convergent series with easily computable 

components. Two numerical examples results show that this method is a 

promising and powerful tool for solving this problems. 
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1. Introduction 
Over the last decade several analytical and approximate methods have 

been developed to solve the linear and nonlinear differential equations. 

Among them is the Adomian decomposition method. The Adomian 

decomposition method has been receiving much attention in recent years in 

applied mathematics in general, and in the area of series solutions in 

particular .The method proved to be powerful, effective, and can easily 

handle a wide class of linear or non-linear, ordinary or partial differential 

equations, and linear and non-linear integral equations differential delay. 

The method attacks the problem in a direct way and in a straightforward 

fashion without using linearization, perturbation or any other restrictive 

assumption that may change the physical behavior of  the model under 

discussion. Many researchers use ADM to approximate numerical 

solutions. In [1], Wazwaz proposed a modification of ADM method in 

series solution to accelerate its rapid convergence, and, in [2] ,Wazwaz also 

presented several numerical examples of higher-order boundary value 

problems for first-order linear equation and second-order nonlinear 

equation by applying modified decomposition method. In addition, 
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Wazwaz [3, 4] provided first-order linear and second-order nonlinear 

problems to solve fifth-order and sixth-order boundary value problems by 

the modified decomposition method. Later, Meˇstrovi´c [8], solved eight-

order boundary value problems for first-order linear and second-order 

nonlinear boundary value problems. Similarly, in [9], Hosseini and Jafari 

used Adomian decomposition method to solve high-order and system of 

nonlinear differential equations., we use the same method for solving 

several different problems, such as, in calculus of variations, see [10], for 

eikonal partial differential equation, see [11], for the Fitzhugh-Nagumo 

equation which models the transmission of nerve impulses, see [12], for 

linear and nonlinear systems of Volterra functional equations using 

Adomian-Pade technique, see[13], for coupled Burgers equations by using 

Adomian-Pade technique see [14], for solution of a nonlinear time-delay 

model in biology by using semianalytical approaches, see[15], for solving 

the pantograph equation of order m, see[6], and for non classic problem for 

one-dimensional hyperbolic equation by using the decomposition 

procedure, see[16]. Although this paper is devoted to investigate ordinary 

differential equations, it seems useful to employ the Adomian 

decomposition method first to nonlinear ordinary differential equations. It 

is well known that nonlinear ordinary differential equations are, in general, 

difficult to handle .The Adomian decomposition method will be applied in 

a direct manner as discussed that non-linear terms should be represented by 

the so called adomian polynomials. It is interesting to point out that the 

modified decomposition method and the noise terms phenomenon, that will 

be used here at proper places. Recall that in solving differential equations, 

solutions are usually obtained as exact solutions defined in closed form 

expressions, or as series solutions normally obtained from concrete 

problems. 

2. Modification Adomian Decomposition Method  
To apply the Adomian decomposition method for solving ordinary 

differential equations, we consider the differential equation 

L(y)+R(y)+N(y)=g(x),                                            (2.1) 

where the differential operator L is the highest order derivative in the 

equation, R is the remainder of  the differential operator, where the order of 

L must be greater than R, N(y) expresses the nonlinear terms, and g(x) is  

an inhomogeneous term. Then, we assume that L is invertible by using the 

given conditions and applying the inverse operator L
-1

 to both sides of 

(2.1), we get the following equation: 

y=𝜓0- L
-1

g(x) - L
-1

R(y) - L
-1

N(y),                            (2.2) 
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where the function 𝜓0 is arising from integrating the source term from 

applying the given conditions, which are prescribed. And so on the 

Adomian decomposition method admits the decomposition of y into an 

infinite series of components  

y(x)= n ,                                                                                     (2.3) 

and the  nonlinear term N(y) be equated to an infinite series of polynomials 

N(y)= n ,                                                                                    (2.4) 

where An are the  Adomian polynomials. Substituting (2.3) and (2.4) into 

(2.2) gives 

n=𝜓0- L
-1

g(x) - L
-1

R( n) - L
-1

N( n) ,          (2.5) 

The various components yn of the solution y can be easily determined by 

using the recursive relation  

Y0= 𝜓0- L
-1

g(x), 

Yk+1= -L
-1

(Ryk) - L
-1

(Nyk),     for  k ≥ 0.              (2.6) 

Consequently, the first few components can be written as  

Y0= 𝜓0- L
-1

g(x), 

                                          Y1= -L
-1

(Ry0) - L
-1

(A0),                                (2.7) 

Y2=- L
-1

(Ry1) - L
-1

(A1), 

Having determined the components Yn , n≥ 0, the solution y in a 

series form follows immediately. As stated before, the series may be 

summed to provide the solution in a closed form. However, for concrete 

problems, the n-term partial sum 

n= k ,                                                   (2.8) 

We can apply modification by assuming that the function  f  can be written 

as 

             f= 𝜓0- L
-1

g(x),                                  (2.9) 

The components Yn are determined by using the following relation: 

                  Y0= f ,                                                   (2.10) 

  Yk+1= -L
-1

(Ryk) - L
-1

(Nyk),      for  k  0                  (2.11) 

From the above equations, we observe that the component Y0 is 

identified by the 

Function f. the modified Adomian decomposition method will 

minimize the volume of calculations, we split the function f  into two parts, 

f0 and f1. Let the function be as follows: 

f = f0 +  f1 ,                                        (2.12) 

Under this assumption, we have a slight variation for components Y0 

and Y1, where f0 

assigned to Y0 and  f1  is combined with the other terms in  (2.10) to assign 

Y1. The modified recursive algorithm is as follows: 
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                           (2.13) 

for  k ≥ 1. 

However , the nonlinear term F(y) can be expressed by infinite series of the 

so-called Adomian polynomials An given in the form 

F(y) =  (y0,y1, y2 , … , yn) ,                                     (2.14) 

There are several rules that are needed to follow for Adomian 

polynomials of nonlinear operator F(y): 

A0 = F(y0) , 

                                                     A1= y1 F'(y0) ,                                   (2.15) 

A2= y2 F'(y0) +  y
2

1 F''(y0) , 

and so on; see [7], then substituting (2.15) into (2.14) gives  

                                F(y) = A0 + A1 +  A2 + …                                    (2.16) 

To illustrate the applicability and effectiveness of the method, we 

presented  two numerical examples, the results are compared with the 

methods DTM and VIM see [19,17]. The ADM [20,18,5] is a well-known 

systematic method for solving linear and nonlinear equations, including 

ordinary differential equations, partial differential equations, integral 

equations and integro-differential equations. The method permits us to 

solve both nonlinear initial value problems and boundary value problems. 

The method is well known, and several advanced progresses are conducted 

in this regard. 

3. Numerical Examples         
Example 1:- 

The linear thirteenth order BVPs, is considered as 

y
(13)(x) = Cosx – Sinx ,                    0 ≤ x ≤ 1 ,                                (3.1) 

)                         3.2) 

The exact solution of the problem is u(x) = Cosx + Sinx . 
Equation (3.1) can be rewritten in operator form as follows: 

Ly = Cos x – Sin x ,          0 ≤ x ≤ 1 ,                                              (3.3)             

Operating with thirteen fold integral operator L
−1

 on (3.3) and using the 

boundary conditions at x= 0 , we obtain the following equation: 
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y(x) =1+x  x
2

x
3
+ x

4
+ x

5
 x

6
+ x

7
+ x

8
+ x

9
+ x

10
+ x

11
+         

(3.4) 

          x
12 

+L
-1

(Cosx – Sinx).    

Then, determine the constants  

  . 

Substituting the decomposition series (2.3) for y(x) into (3.4) yields 

n=1+x x
2

x
3
+ x

4
+ x

5
x

6
+ x

7
+ x

8
+ x

9
+ x

10
+ x

11               
 

(3.5)                           

               + x
12

+  L
-1

(Cosx – Sinx).                              

Then, we split the terms into two parts which are assigned to y0(x) 

and y1(x) that are not included under L−1 in (3.5). We can obtain the 

following recursive relation: 

y0(x) =1 , 

y1(x)=x x
2

x
3
+ x

4
+ x

5
x

6
+ x

7
+ x

8
+ x

9
+ x

10
+ x

11
                    

(3.6) 

          + x
12

+  L
-1

(Cosx – Sinx). 

   

To determine the constants A,B,C,D,E and F, we use the boundary 

conditions in (3.2) at  x =1 on the two-term approximant 2, where 

 

                      2= k ,                                                                                    (3.7) 

 

 The coefficients A,B,C,D,E and F, were obtained  by using Matlab with 

boundary conditions at  x=1 in (3.2)  given 

 

A= -1.00000000000011, B= 1.00000000000391, C= 0.9999999999367303 

, 

 

D= -0.9999999994259821, E= -1.000000002887327 , F= 

1.000000006381563.   (3.8)                

 

Then we get the series solution as follows: 

 

y(x)= cosx sinx 2.179468943649792 10
-17

x
7

9.697411134499918 10
-

17
x

8
     

         1.743541143733518 10
-16

x
9

1.581839726078266 10
-16

x
10

 

7.233361753749345 10
-17

x
11

  1.332263492302841 10
-17

x
12

 .              
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Example 2:- 

 

The thirteenth order non-linear BVPs  is considered as 

 

y
(13)

(x) =e
-x

 y
2
(x) ,                    0 ≤ x ≤ 1 ,                                    (3.9)    

 

                                                       )

3.10) 

 

 

The exact solution of the problem is y(x) = e
x
 . 

Equation (3.9) can be rewritten in operator form as follows: 

 

Ly =e
-x

 y
2
(x) ,                    0 ≤ x ≤ 1 ,                                   (3.11) 

 

Operating with thirteenfold integral operator L
−1

 on (3.11) and using the 

boundary conditions at x= 0 , we obtain the following equation: 

 

Y(x) =1+x  x
2

x
3
+ x

4
+ x

5
+ x

6
+ x

7
+ x

8
+ x

9
+ x

10
+ x

11
+       

(3.12) 

           x
12 

+L
-1

(e
-x

 y
2
(x)).  

   

Then, determine the constants  

 

  . 

 

 Substituting the decomposition series (2.3) for y(x) and the series of 

polynomials (2.4)  into  (3.12) yields 

 

n =1+x  x
2

x
3
+ x

4
+ x

5
+ x

6
+ x

7
+ x

8
+ x

9
+ x

10
+ x

11
+ 
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                x
12 

+L
-1

(e
-x

n) .                                                                      

(3.13) 

 

Then, we split the terms into two parts, which are assigned to y0(x) and 

y1(x) that are not included under L
−1

 in (3.12). We can obtain the following 

recursive relation: 

 

y0(x) =1 , 

 
y1(x) = x  x

2
x

3
+ x

4
+ x

5
+ x

6
+ x

7
+ x

8
+ x

9
+ x

10
+  x

11
+ x

12 
+ L

-

1
(e

-x
0),   

 

                                       yk+1=  - L
-1

(yk),       for  k ≥ 1.                                    
(3.14) 

 

To determine the constants A,B,C,D,E and F, we use the boundary 

conditions in (3.10) at  x =1 on the two-term approximant 2, where 

 

                                                                    2= k ,                                                                                    

(3.15) 

The coefficients A,B,C,D,E and F,are obtained by  using Matlab which 

gives : 

A= 0.9999992795332221, B= 1.000033584280779, C= 

0.9992757215112231 ,  

 

D=1.009033515968163, E=0.9339646023928783, F=1.236575305176785.        

(3.16)                

 

Then we get the series solution as follows: 

y(x)=2+x
2

e
-x

+0.08333333333333333x
4
+0.002777777777777778x

6
  

        1.429497575147045 10
-10

x
7
+0.00004960400754664629x

8
  

        1.995917352229043 10
-9

x
9
+5.536357793122142 10

-7
x

10
  

        1.654325938129352 10
-9

x
11

+4.669243913124268 10
-9

x
12

. 

The approximate solutions of two numerical examples obtained with the 

help of MADM are compared with the results of the VIM  and DTM , in 

Tables 1-2 respectively. From the numerical results, it is clear that the 

MADM is more efficient and accurate. The graphical comparison of exact 

and approximate solutions is shown in Figure 1-2 respectively. 
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4. Conclusions 
In this paper, modified adomian decomposition method can be used 

successfully for finding the solution of linear and nonlinear BVPs of 

thirteenth order ODEs. It may be concluded that is a very powerful and 

efficient in finding highly accurate solutions for a large class of differential 

equations and is practically well suited for nonlinear problems. 

Table 1: Comparison of numerical results for Example 1 
x Exact solution MADM Error 

MADM 

Error DTM Error VIM 

0 1.000000000000000 1.000000000000000 0 0.0000 0 

0.1 1.094837581924854 1.094837581924854 0 2.22045E-16 3.88578E-15 

0.2 1.178735908636303 1.178735908636303 0 0.0000 1.46216E-13 

0.3 1.250856695786946 1.250856695786946 0 2.22045E-15 8.80518E-13 

0.4 1.310479336311536 1.310479336311536 0 6.66134E-15 2.35822E-12 

0.5 1.357008100494576 1.357008100494576 0 1.11022E-14 3.8014E-12 

0.6 1.389978088304714 1.389978088304714 0 1.04361E-14 5.14766E-11 

0.7 1.409059874522180 1.409059874522180 0 5.32907E-15 1.56224E-11 

0.8 1.414062800246688 1.414062800246688 0 8.88178E-16 8.99409E-11 

0.9 1.404936877898148 1.404936877898148 0 0.0000 4.70031E-10 

1 1.381773290676036 1.381773290676036 0 0.0000 2.06386E-9 

Table 2: Comparison of numerical results for Example 2 
x Exact solution MADM Error 

MADM 

Error DTM Error VIM 

0 1.000000000000000 1.000000000000000 0 0.0000 0 

0.1 1.105170918075648 1.105170918075648 0 4.44089E-16 4.17444E-14 

0.2 1.221402758160170 1.221402758160170 0 4.44089E-16 2.64144E-12 

0.3 1.349858807576003 1.349858807576004 4.E-15 2.44249E-15 2.99314-11 

0.4 1.491824697641270 1.491824697641273 1.2E-14 7.32747E-15 1.67101E-10 

0.5 1.648721270700128 1.648721270700133 1.9E-14 1.22125E-14 6.30955E-10 

0.6 1.822118800390509 1.822118800390514 1.8E-14 1.11022E-14 1.84757E-09 

0.7 2.013752707470477 2.013752707470479 1.E-14 5.77316E-15 4.47866E-09 

0.8 2.225540928492468 2.225540928492469 2.E-15 1.77636E-15 9.21592E-09 

0.9 2.459603111156950 2.459603111156950 0 8.88178E-16 1.58906E-08 

1 2.718281828459046 2.718281828459046 0 0.0000 2.09057E-08 
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Figure 2: Comparison between the exact and MADM solution of example2. 
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