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Abstract

The paper presents a developed method with algorithms written in
Matlab language to find the numerical solution of nth-order state-space
equations (SSE) of linear continuous-time control system by using Scraton
method. State-space equation is the modern representation to analysis
continuous-time system. It was treated numerically to the single-input-
single-output (SISO) systems as well as multiple-input-multiple-output
(MIMO) systems by using fourth-order Scraton method. Scraton method
employed to find the output values of the state-space equations.
Comparisons between the numerical and exact results are given for some
numerical examples to conciliate the accuracy of the proposed method.
Key words: State-space equation, Scraton method, Control system and Algorithms.

1. Introduction

Control systems are playing vital role in our life for instance:
thermostat, automatic control of airplane, etc. The system is a combination
of component that act together and perform a certain objective [1,2].

In recent years, automatic control systems have assumed an
increasingly important role in the development and advancement of modern
civilization and technology. They are employed in numerous applications,
such as quality control of manufactured products and machine tooling. The
basic control system problem may be described by the simple block
diagram shown in figure (1) [1,3,4].
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Control system

Actuating Signal Output (controlled variable)

Figure(1) The basic control system.

Modern control theory adopts what known as state-space equations
(SSE) for mathematical representation of systems. Among its different
advantages it makes possible to deal with [4,5]:

e Time variant systems.

e Nonlinear systems.

e Multiple-input-multiple-output system.

The linear state-space equation is given by:

X (t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
where x(t) eIR" is the state vector, u(t) €IR™ is the control input of the
system, y(t) IR" is the output of the system, A is the system matrix, B is
the control input matrix, C is the output or measurement matrix and D is
the direct feed matrix. This description is said to be time-invariant if A,B,C
and D are constant matrices.

State-space method of continuous-time system was solved by several
methods as Laplace transformation and matrix exponential [6,7]. In this
work different types of state-space representation are solved numerically by
using fourth order Scraton method. The modeling of linear continuous-time
systems by using state space method with their solutions have been
presented in the following section.

2. State - Space Equations :

State space equation (SSE) describes the state of the system, where it
is ideally suited for the analysis of multiple-input-multiple-output systems
as well as single-input-single-output systems [8].

J. John [9] used state-space representation for solving the pitch
controller problem and Dk. James [10] used state space equations to solve
the cruise control problem.

In this section, we shall present methods for obtaining state-space
representation (SSR) of linear continuous-time control systems (CTCS).

2.1 SSR of " Order Linear CTCS In Which The Forcing

Function Dose Not Involve Derivative Terms :
Consider the following nth-order dynamic system [1,4]:

y®O ) +a,y" P () +...+a,, Y(t) +a,y(t) = u(t) ~..(1)
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Noting that the knowledge of y(0), y(0)...., y"™(0), together with the input or
forcing function u(t) for t >0, determines completely the future behavior
of the system, we may take y(t), y(t),..., y" ™ (t) as a set of n state variables.
Let us define the following state equation:
X(t) = Ax(t) + Bu(t) ...(2)
where X (t) is the state vector which is:
x®] [y
X, (t) y(t)

x(t) = = ...(3)
O] Ly"P
A is the time-invariant system matrix, defined by:
e 1 0 .. 0]
0 0 1 .. 0
A=| : : :
0 0 0o .. 1
|—a, —&,, —&,, . —& ]
o
and B is the (nx1) time-invariant input matrix defined by : ?
0
_1_n><1
X (t)
The output equation becomes . yt)=[L 0 - 0] XZ,(t) ...(4)
X, (1)
or y(t) = Cx(t) ...(5

where c=[ o - 0].
Hence, Eq.(2) and Eq.(5) are the state-space equation.
2.2 SSR of n" Order Linear CTCS with (m) Forcing
Functions [2,6,7]:
Consider the multiple-input-multiple-output (MIMO) linear
continuous system shown in figure (2). x(t),x,(t),..., X, (t) represent the state

variables, u, (t),u, (t),..,u, (t) denote  the input  variables  and
y; (1), y,(t).....y () are the output variables. From figure(2) we obtain the
system equations as follows:
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X, (1) = ay %, () +a,%, (1) + - + @y, X, (£) + byyuy (£) +bou, () +---+ by u (1)
X, (1) = @y, X, (1) +2,,X, (1) + -+ + 2y, X, (1) +byyu, (1) +by,u, (1) +--- + by U (1) (6)
Xn (t) = anlxl(t) + an2X2 (t) +eeet anan (t) + bnlul(t) + bnzuz (t) +eeet bnmum (t)
where the a’s and b’s are constants. Hence, the state equation for the
system (6) is:

X(t) = Ax(t) + Bu(t) ..(7)
where X (t) is the state vector given by :
X (t)
X(t) = Xz:(t) ,
X, (D)
while the input vector u(t) is given by :
u (t)
u(t) = Uzz(t)
up, (t)
A is the time-invariant system matrix defined by :
&y &y ... Gy
A_|B B2 o By
Ay Ay e Ay
and B is the time-invariant input matrix defined by :
b, b, ... b,
g_|Pa Pz - Do
by by oo b
328 Pl Linear .X1(ﬂ. Pl Output —N),/lz((?)
Un® | plant o element ! Yolt)
v Xn(t) "

Figure(2) (Multiple-input-multiple-output linear continuous system)
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Similarly, the continuous time output variables are linear
combinations of the values of the input and state variables as follows:

Y, (1) = €y X, (1) + € X, (1) + -+ + ¢y X, (1) + dyyu, (1) +dy,u, (1) +---+dy up, ()
Yo (t) = CouX; (1) +Cpp Xy (1) + -+ Cp X, (1) + dypuy (1) + d U, () +--- + dy U () ©)

yp(t) = Cplxl(t) +Cp2X2 (t) +eeet Cann (t) +d plul(t) + dpzuz(t) +eeet dpmum(t)

System (8) can be written in matrix form as:
y(t) = Cx(t) + Du(t) ...(9)

AU

where the output vector y(t) is given by: ) - yz.(t)

Yo (D)

Cisthe pxn time-invariant output matrix defined by :

Cin Cp Cin
C = C.21 Ca2 Can
c C Cc

pl

and D is the pxm time-invariant transmission matrix defined by :

p2

pn

pxn

dll d12 dlm
D= d21 d22 d2m
dyy d,, ... do,

1 pxm

Eqg.(9) is the output equation for the system. The matrices A, B, C
and D completely characterize the system dynamics.
Eq.(7) and Eq.(9) are the state-space equation of the continuous system.
Note that, when the technique:
X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) }
...(10)
1- Has one input (m = 1) and one output (p = 1), then the system is
called system with single-input-single-output (SI1SO).
2- Has one input (m = 1) and (p) outputs, then the system is called
system with single-input-multiple-output (SIMO).
3- Has (m) inputs and one output (p = 1), then the system is called
system with multiple-input-single-output (MISO).
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4- Has (m) inputs and (p) outputs, then the system is called system with
multiple-input-multiple-output (MIMO).
A block diagram representation of the system defined by Eq.(10) is
shown in figure (3). Double lines are used in the diagram to indicate vector
quantities [1,4].

i@ B )

Figure(3) (Block diagram of the continuous-time system described
by state-space technique in Eq.(7) and Eq.(9)).

\Z \/
- w)
i
@)
3
ﬁ ’

2.3 SSR of ™ Order Linear CTCS in which The Forcing
Function Involves Derivative Terms[1,2,5] :
If the system involves derivatives of the forcing function, such as:
yO ) +ay" P ) +...+a,,y(t) +a,y(t) =bu™ ) +bu D) +---+b,_ut) +bu() ...(11)
then, we define the following n variables as a set of n state variables:

X (t) = y(t) - Au(t)
X,(t) = Y(t) - Bu(t) - Bu(t) = %, (t) - Bu(t)
X (1) = §(t) - Bli(t) — BU() — Bu(t) = X, (t) — Byu(t) (12)

XO)=y OB U OB U Q) B i(t) = Batt) = K, (1)~ B U(E)

where 8,3, B,.... 5, are determined from
ﬂo = bo
ﬁl = bl - aiﬂo
ﬂz = bz - a:lﬂl - azﬂo (13)
ﬁa = b3 - alﬂZ - azﬂl - aeﬁo

ﬁn = bn _aiﬁn—l T an—lﬂl _anﬁo
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Hence, the state equation and the output equation of state-space method

are:
@] [0 1 0 - 0 [x®] [A]
X, (t) 0 0 1 -0 X, (t) B,
: =| : : : : ol b u)]
Xn—l (t) 0 0 0 o 1 X (t) ﬂn—l
_Xn(t)_ __an —a,,; —a,, - _al_ _Xn(t)_ _ﬂn |
X () ]
X, (1)
yt)=[L 0 0 - 0] i |+Au()
Xn—l(t)
RYVN
or
X(t) = Ax(t) + Bu(t) ..(14)
y(t) = Cx(t) + Du(t) ...(15)
where
[ x(t) ] 0 1 0 cee 0] R
X, (t) 0 0 1 -0 5,
x(t)=| o A=l : : : ' B=| :
X, (t) 0 0 o - 1 Bos
L Xn(t) i |~ an - an—l - an—Z _al_ L ﬂn |

, C=[1 00 -~ 0] and D=p, =h,

The initial condition x(0) may be determined by using Eq.(12).

3. Scraton Method:
Scraton’s method provides efficient mean for the solution of the
many problem arising in various fields of science and engineering [11,12].
Let y=ftyt) with  yt)=y, ... (16)
Hence, a fourth order method is derived by Scraton [9,10] as:
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yn+l_yn+h[17S +Sls +13SS +2508 ]

162 170 1377

where

S1 = f(tmyn)’
S, = f(t, +2h,y, +3hs,), (17
S;="f(,+3hy, +5hS, +1hS,),

S, = f[tn +%h, Y, +13—h(23s1 —81s, +9053)j,

9 9h
SS:f[ *10™Y" * 10000 )
The local truncation error (L.T.E.) of eq.(17) is given by
E,,=har/g ... (18)
where
q=—-%S, +35S;, %S, +&S; ,
r=1s, -2s, +§—S £S5, ... (19)
g=S,-S,.

4. Numerical Solution of State-Space Equations (SSE) of

Linear Continuous-Time Systems Using Scraton Method :
In this section different types of linear state-space equations have
been solved using Scraton method.
4.1 The Solution of n™ Order SSE In Which The Forcing

Function Dose Not Involve Derivative Terms :
Recall eq.(2) , it can be written as:

A — £ 000,50, 0,000 .20)
where X, (t), X, (t),...,x,(t) are the state variables, u(t) is the input of the
system and f;, i=1,2,...,n denotes the ith linear functional relationship.

The output of the system is obtained from eq.(5) as:

y(t) =X, (t) ..(21)

The numerical solution of SSE in eq.(20) and eq.(21) can be found
by using (SS-SSES) algorithm which summarizes the steps for finding the
numerical solution for the SISO-SSE using Scraton method in eq.(17).
SS-SSES Algorithm :

Input
e t, (the initial state).
e k ((k+1)isthe number of points (t,,t,....t, ).
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e n (the order of the SSE).
e The functions f; , i=1,2,...,n of state equation (20).
Output
e The state variables x,(t;) wherei=1,2,....n and j=0,1,..., k.

e The output values of SSE y(t;) , j=0.1,.... k.
Step1l: Set h :%
Step 2: Set j=0
Step 3 For each i=1,2,...,n compute S,
Wheres, = f,(x,(t;),... x, ;) u(t;))
Step4: Vvi=12..n compute S, where
Sy = (X (t;) +2hSys,ee, X, (t;) + 20, u(t; +2h))
Step5: Vvi=12..n compute S, where
Sy = fi( % (t;) +&hSy, +1hS,,,, X, () + 5 Sy, +20S,,, u(t; +1h))
Step6: Vvi=12..,n compute S, Where

S ¢ X, (t; )+ (23811 81S,, +90S;,),..., X, (t; )+ (2381n -
4i = i

81S,, +9033n),u(tj +3h)
Step 7: vi=12,.,n computes, where

X (t;)+ 109020 (—345S,, + 20258, 12248, + 244S,,.),..., X, (t;)
SSi = fi oh .
——(—345S,, + 20255, —1224S, +244S,,),u(t; +Zh
10000( 1n 2n 3n 4n) ( )
Step 8: vi=12..,n compute:
ti,=t+ h
X (tj+l) X (t ) + h[162 i T 18710 S + 13325 S + 1235707 SSI ]

Step9: Put j=j+1
Step 10: If j=k then go to (step 11).
Else go to (step 3)
Step 11: For j=0.,1,..., k compute the output values of SSE :
y(tj)le(tj)
4.2 The Solution of n™ Order SSE with (m) Forcing
Functions

The fourth order Scraton method has been used to find the numerical
solution for the following MIMO-SSE:

eg.(6) in section (2.2) can be written as:
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d);ft) = 06 (1), X, (),erns X, (1), Uy (1), Uy (),-.., U (1)) (22)

where X (t),X,(t),...,x,(t) are the state variables, u,(t),u,(t),...,u (t)are the
input variables of the system and f;, i=1,2,...,n denotes the ith linear
functional relationship.

The outputs ( y4(t), q =1,2,...,p) of the system in eq.(8) are related to
the state variables and the input through the following expression:

yq(t) = gq(Xl(t)’ Xz(t)1 " n(t) u (t) uz(t)1 " m(t)) (23)

where g4, q=1,2,...,p denotes the qth linear functional relationship.

The numerical solution of SSE in eq.(22) and eq.(23) can be found
using (MM-SSES) algorithm where it summarizes the steps for finding the
numerical solution for the MIMO-SSE using Scraton method in eq.(17).

MM-SSES Algorithm:

Input
o t, (the initial state).

e kwhere (k + 1) is the number of points (t,,t,,...,.t,).
e n (the order of the SSE).
e The functions f; , i=1,2,...,n of state equation (25).
e The functions g, , q=1,2,...,p of the output equation (26) of state space
model.
Output
e The state variables x; (t;) where i=1,2,...,n and j=0,1,..., k.
e The output values of SSE vy, (t;)in eq.(23) where q=12,..,p and
j=0,1,..., k.
Stepl: Set h=
Step 2: Set j=0
Step 3: Foreach i=1,2,....,n compute S, where
Sy = F O () X, (), Uy (8, U, ()
Step4: Vvi=12..n compute S, where
Sy = fi(%(t;) + 2hSp,y X, (t;) + 20S,, Uy (¢ +2h),..,u, (& +2h))
Step5: Vvi=12..n compute S, where
Sy = fi( % (t;) + &hSy; +2hS, e, X, (§;) + 5 Sy, +20S,,, Uy (t; +2h),..u, & +1h))
Step6: Vi=12..,n compute S, Where

s _f| ¥ (5 )+ (23S11 81S,, +90S,,),.... X, (t; )+ (23S1n -
4i = i .
81S,, +9083n)'u1(tj +2h),..., Uy (t; + 2h)
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Step7: Vvi=12..,n computes, where

X, (t;) + on (—345S,, + 2025S,, —1224S,, + 244S,,)),..., X, (t,)
S i 10000
51 7 i
9h
+ —345S,, +2025S,, —1224S, +244S,.),u,(t; + Zh),..., U, (t; +2h
10000( in 2n 3n 4n) ( ) ( )
Step 8: vi=12..n compute:
t,,=t;+h
X (tj+l) X (t )+ h[162 i T 18710 S3| + 13325S + 1235707S

Step9: Vv qg=12,..,p compute the output values of MIMO-SSE :
Yo () = 9q (% (t), X, (85 ),y X, (1), U (), U (8), U ()
Step 10: Put j=j+1
Step 11: If j=k then stop.
Else go to (step 3)
4.3 The Solution of n™ Order SSE In Which The Forcing
Function Involves Derivative Terms :

The fourth order Scraton method has been used to find the numerical
solution for the following SSE:

eq.(14) in section (2.3) can be written as:

B £ (0,05, 0,05, 0,4, U) .. (24)
where x,(t), %, (t),..., X, (t) are the state variables, u(t)are the input variable of
the system, B in eq.(13) and f;, i=1,2,...,n denotes the ith linear
functional relationship.

The output of the system is obtained from eq.(15) as:

y(t) = x, )+ Au(t) ... (29)

The numerical solution of SSE in eq.(24) and eq.(25) can be found
using fourth order Scraton method by applying (SS-SSES) algorithm as
prescribed in section (4.1).

5. Numerical Examples:

The previous methods in section (4) are illustrated in the following
examples :-
Example (1) :

In the Cruise Control Problem [10], the state-space model was
derived as:
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()]
() |

y(t) =

0 1
0 -0.05

X(t) |
: O]L'((t)_

WH 0 }u(t)
x| " | 0.001

+[0]u()

where the initial state is: x(0) = m and the forcing function u(t)=e', t>0.

The exact solution of the above SISO state-space model is:

X(t) = {

exact,
exact,

x(t) |
o)

—2098

105

1
1049 o 20t 1
1050° + €

1
—Lt
20 999
e +%0 T

1050

1
1050e
t

t

Table (1) presents the comparison between the exact and numerical

solution by applying (SS-SSES) algorithm for

k=10, h=0.1 and

t; =ih, i1=01,...,k depending on least square error (L.S.E.). The local
truncation error (L.T.E.) in eq.(18) and the output variables y(t) of state
space model by applying (SS-SSES) algorithm is also tabulated.

Table (1) The numerical solution x(t) and the output variables

y(t) of state space model for Ex.(1).
Scraton Scraton output | Scraton

t Exacty | 7 LTE | Bxact |~y L.T.E. y(t) V)

0 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 0.0000 | 0.0000 | 0.0000
0.1 | 0.0998 | 0.0998 | -4.4e-14 | 0.9951 | 0.9951 | -1.1e-14 | 0.0998 | 0.0998
0.2 | 01990 | 0.1990 | -4.8e-14 | 0.9903 | 0.9903 | -1.2e-14 | 0.1990 [ 0.1990
0.3 | 0.2978 | 0.2978 | -5.3e-14 | 0.9855 | 0.9855 | -1.4e-14 | 0.2978 | 0.2978
0.4 | 03961 | 0.3961 | -5.8e-14 | 0.9807 | 0.9807 | -1.5e-14 | 0.3961 | 0.3961
0.5 | 04939 | 0.4939 | -6.5e-14 | 0.9760 | 0.9760 | -1.7e-14 | 0.4939 | 0.4939
0.6 | 05913 | 0.5913 | -7.2e-14 | 0.9713 | 0.9713 | -1.9e-14 | 0.5913 | 0.5913
0.7 | 06882 | 0.6882 | -8.1e-14 | 0.9666 | 0.9666 | -2.1e-14 | 0.6882 | 0.6882
0.8 | 0.7846 | 0.7846 | -9.2e-14 | 0.9620 | 0.9620 | -2.4e-14 | 0.7846 | 0.7846
0.9 | 0.8806 | 0.8806 |-10.4e-13 | 0.9574 | 0.9574 | -2.6e-14 | 0.8806 | 0.8806

1 0.9761 | 0.9761 [-11.9e-13|0.9529 | 0.9529 | -2.9¢-14 | 0.9761 | 0.9761

3.5652e- 7.1377e- 3.5652€-
L.S.E. o1 L.S.E. 4 - L.S.E. o1
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Example (2) :
Consider the MIMO control system shown in figure (4) :

u(t)

Ju ;O—w’(t)

+ A

—» 2.0

u(t) +< ) Idt .Xz(t) “;( >Y2(t)

: +

Figure(4) (Simulation diagram for a multivariable system)
The MIMO state-space model was derived from fig.(4) as follows :

x@©] [05 0x@®] [1 1] u(®
L’(Z(t)} { 1 —1[x2(t)}{0 J_uz(t)}

u®] [T 2][x®] [0 0 u)
{yz (t)} B {0 J_xz (t)} " {0 1]%(0}

The initial state of the MIMO state-space model is: x(0) = B%} =m and

. . lw® | ]l
the forcing function u(t) = w7 |t , 120,

2015 -87 susell 21 slyalt- 145 - Egala Y1 &gy il B2 ala



Scraton Method for Solving n™ Order State-Space Equations of Linear
Continuous-Time Control SYStems ...........ooiiiiii e

Raghad Kadhim Salih , Atheer Jawad Kadhim Isra'a Hadi Hasan
The exact solution of the above MIMO state-space model is:

X(t) :{exactl } _ {xl(t)} _| —6-2t+6e

exact, X, (1) —5—t+et+4e
Table (2) presents the comparison between the exact and numerical
solution by applying (MM-SSES) algorithm for k=10, h=0.1 and
t; =ih, i1=01...,k depending on least square error (L.S.E.).
Table (2) Numerical results using Scraton method

t | Exact, Scraton Exact, Scraton | Output | Scraton | Output | Scraton
Xa(t) Xa(t) yi(t) yi(t) Ya(t) Ya(t)
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 | 0.1076 | 0.1076 | 0.0099 | 0.0099 0.1275 0.1275 0.1099 0.1099
0.2 | 0.2310 | 0.2310 | 0.0394 | 0.0394 0.3099 0.3099 0.2394 0.2394
0.3 | 0.3710 | 0.3710 | 0.0882 | 0.0882 0.5473 0.5473 0.3882 0.3882
0.4 | 0.5284 | 0.5284 | 0.1559 | 0.1559 0.8403 0.8403 0.5559 0.5559
0.5 | 0.7042 | 0.7042 | 0.2426 | 0.2426 1.1894 1.1894 0.7426 0.7426
0.6 | 0.8992 | 0.8992 | 0.3482 | 0.3482 1.5956 1.5956 0.9482 0.9482
0.7 | 1.1144 | 1.1144 | 0.4729 | 0.4729 2.0601 2.0601 1.1729 1.1729
0.8 | 1.3509 | 1.3509 | 0.6166 | 0.6166 2.5842 2.5842 1.4166 1.4166
09 | 1.6099 | 1.6099 | 0.7798 | 0.7798 3.1695 3.1695 1.6798 1.6798
1 |1.8923 | 1.8923 | 0.9628 | 0.9628 3.8179 3.8179 1.9628 1.9628
L.S.E. 1'111fe' L.S.E. 2'6&8‘3' L.S.E. |565e14 | LSE. 2'619489'
Example (3) :

Consider the following SISO control system equation for the Pitch
controller [9]:
X +6X+11X+6Xx=0U+8l+17u+8u
with initial conditions: y(0)=0, y(0)=1, y(0)=0 and the forcing function
u(t)=2t>t>0,
The state-space equation was derived using eg.(14) and eq.(15) as
follows :
%, (t) 0 1 O
X)) |=]| 0 0 1

@] |2
X, () [+] -6 |[u()]

()] [-6 —11 —6| X (t)] |16
X, (t)

y®) =1 0 0] %) |+u(t)
X, (1)
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%01 |0
where the initial state of the state-space model is: x(0) =|x,(0) |=|1| and the
%) ] |0

forcing function u(t) =2t%,t>0.
The exact solution of the above SISO state-space model is:

5 o2t 89 o3t 19 ot 2+3 742 77 559
exact, | [x, ()] | 2€ *wma€ 7€ FIUHsti—gt+gy

=2t 89 o3t 19 -t 3 2 14 77

x(t) =|exact, |=| X, (t) |=| € = —g€& +3 e —4U+2U° +Ft-F
exact, | |[X:()] |-10e™* +8e —19e7 +12t° —12t% + 4t + L

|Table (3) presents the comparison between the exact solution of
state space model and numerical solution by applying (SS-SSES)

algorithm for k=10, h=0.01 and t, =ih, i=0.1...,k depending on (L.S.E.).

Table (3) Numerical results using Scraton method

Scraton Scraton Scraton Output Scraton

t Exact; X,(t) Exact, X(t) Exact; Xs(1) y (tp) y(t)
0 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.01 | 0.0100 0.0100 0.9995 0.9995 -0.1070 -0.1070 0.0100 0.0100
0.02 | 0.0200 0.0200 0.9979 0.9979 -0.2083 -0.2083 0.0200 0.0200
0.03 | 0.0300 0.0300 0.9953 0.9953 -0.3040 -0.3040 0.0300 0.0300
0.04 | 0.0399 0.0399 0.9918 0.9918 -0.3944 -0.3944 0.0400 0.0400
0.05 | 0.0498 0.0498 0.9874 0.9874 -0.4797 -0.4797 0.0500 0.0500
0.06 | 0.0596 0.0596 0.9822 0.9822 -0.5601 -0.5601 0.0601 0.0601
0.07 | 0.0695 0.0695 0.9762 0.9762 -0.6357 -0.6357 0.0701 0.0701
0.08 | 0.0792 0.0792 0.9694 0.9694 -0.7067 -0.7067 0.0802 0.0802
0.09 | 0.0889 0.0889 0.9619 0.9619 -0.7734 -0.7734 0.0903 0.0903
0.1 | 0.0985 0.0985 0.9538 0.9538 -0.8358 -0.8358 0.1005 0.1005

L.S.E. 1.25%-18 | L.S.E. | 2.491e-18 L.S.E. 2.194e-17 L.S.E. 0.159¢e-18
6. Conclusion:

Scraton method has been presented to find the numerical solution for
different types of nth-order SSE's of linear continuous-time control system.
The results show a marked improvement in the L.S.E. and the L.T.E. From
solving some numerical examples the following points are included:

1- (SS-SSES) and (MM-SSES) algorithms gives a better accuracy and
consistent to the solution of three types of nth-order state-space
equations.

2- The accuracy of approximation in Scraton method depends on the
size of h, if h is decreased then the number of knots increases and the
(L.S.E. & L.T.E.) approaches zero.
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