Sameer Qasim Hassan Mahdi Saleh Nayef

Department of Mathematics College of Education Al-Mustansirya University

Abstract

Let \tilde{R} be a fuzzy subnear-ring of a ring R, \tilde{U} a semifuzzy left ideal of R and d is additive map on R. The purpose of this paper is to prove if \tilde{R} admits a fuzzy derivation d which is fuzzy centralizing on \tilde{U} , then \tilde{V} is a fuzzy commutative ideal of R.

1.Introduction

There are many researchers are engaged in extending the concept of near-ring and derivation such as [6], [7]. A fuzzy near-ring with its properties and with a fuzzy ideal has been discussed in [1],[3],[5],[7],[8].

In this paper we given new results due applied a fuzzy derivation as new definition on a fuzzy near-ring .

A non-empty set R with two binary operation '+' and '.' is called a nearring [2] if

- (1) (R,+) is a group,
- (2) (R,.) is a semigroup,
- $(3) \ x.(y+z) = x.y = x.z \quad for \ all \quad x,y,z \in R.$

We will use the word 'near-ring 'to mean a 'left near-ring'. We denote xy instead of x. y. Note that x0=0 and x(-y)=-xbut in general $0x \ne 0$ for some $x \in R$. An ideal I of near -ring R is a subset of R such that

- (4) (I,+) is a normal subgroup of (R,+),
- (5) RI \subseteq I,
- (6) $(r+i)s rs \in I$ for any $i \in I$ and any $r,s \in R$. Note that I is a left ideal of R if I satisfies (4) and (5), and I is a right ideal of R if I satisfies (4) and (6).

Definition(1,2)[4], [9]:

Let X be a nonempty set, a fuzzy set \tilde{A} in X is characterized by its membership function $\mu_{\tilde{A}}: X \to J$ where J is the closed unite interval [0,1], and we write a fuzzy set by the set of points

 $\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) : x \in X, 0 \le \mu_{\tilde{A}}(x) \le 1\}$ and where $\mu_{\tilde{A}}(x)$ is called a fuzzy relationship function.

Definition(1,3),[7],[8]:

Let R be a near-ring and \tilde{R} be a fuzzy subset of R. We say \tilde{R} a fuzzy subnear-ring of R if

- $(7) \mu_{\tilde{R}}(x-y) \ge \min\{\mu_{\tilde{R}}(x), \mu_{\tilde{R}}(y)\},\$
- (8) $\mu_{\tilde{R}}(x \ y) \ge \min\{\mu_{\tilde{R}}(x), \mu_{\tilde{R}}(y)\}$, for all $x, y \in \mathbb{R}$. \tilde{I} is called a fuzzy ideal of R if \tilde{I} is a fuzzy subnear-ring of R and
- (9) $\mu_{\tilde{i}}(x) = \mu_{\tilde{i}}(y + x y),$
- (10) $\mu_{\tilde{i}}(x \ y) \geq \mu_{\tilde{i}}(y)$,
- ((11) $\mu_{\tilde{l}}$ ((x+i) y-x y) $\geq \mu_{\tilde{l}}(i)$, for any x, y, $i \in R$. Note that \tilde{l} is a fuzzy left ideal (respect semi fuzzy left ideal) of R if it satisfies (7), (9) and (10) (resp. (7),(8) and

 $\mu_{\tilde{i}}(x \ y) = \mu_{\tilde{i}}(y)$ for all $x, y \in \mathbb{R}$), and \tilde{i} is a fuzzy right ideal of R if it satisfies (7), (8), (9) and (11).

We give now some examples of fuzzy ideals of near-rings.

Example(1,1),[7]:

Let $R:=\{a,b,c,d\}$ be a set with two binary operations as follows:

				, ,
+	а	b	c	d
а	а	b	С	d
b	b	a	d	С
c	c	d	b	a
d	d	С	a	b

	a	b	С	d
а	a	а	а	а
b	a	a	a	a
c	a	a	a	a
d	a	a	b	b

Then we can easily see that (R,+,.) is a (left) near-ring . Define a fuzzy subset $\mu_{\tilde{l}}: R \to [0,1]$ by $\mu_{\tilde{l}}(c) = \mu_{\tilde{l}}(d) < \mu_{\tilde{l}}(b) < \mu_{\tilde{l}}(a)$. Then \tilde{l} is a fuzzy ideal of R. Also see the following example.

Example(1,2), [7]:

Let $R:=\{a,b,c,d\}$ be a set with two binary operations as follows:

		. (,	- , - ,
+	a	b	С	d

а	а	b	С	d
b	b	a	d	c
c	c	d	b	a
d	d	c	a	b
	а	b	С	d
а	а	а	а	а
b	a	a	a	a
c	a	a	a	a
d	a	b	c	b

Then we can easily see that (R,+,.) is a (left) near-ring. Define a fuzzy subset $\mu_{\tilde{l}}: R \to [0,1]$ by $\mu_{\tilde{l}}(c) = \mu_{\tilde{l}}(d) < \mu_{\tilde{l}}(b) < \mu_{\tilde{l}}(a)$. Then \tilde{l} is a fuzzy ideal of R, but not fuzzy right ideal of R, since $\mu_{\tilde{l}}((c+b)d-cd) = \mu_{\tilde{l}}(d) < \mu_{\tilde{l}}(b)$.

We denote \tilde{R} as a fuzzy near-ring and we define its fuzzy center as $C(\tilde{R}) = \{x \in C(R) : xy = yx \text{ for all } y \in R \text{ and } \mu_{\tilde{R}}(x) \in \mu_{C(\tilde{R})}\}$, also we denoted the fuzzy commutator by $(\mu_{\tilde{R}}([x,y]) = \mu_{\tilde{R}}(xy - yx))$ and

In particular if [x, y] = 0, implies that $\mu_{\tilde{R}}([x, y]) = \mu_{\tilde{R}}(0)$ and $\mu_{\tilde{R}}(xy) = \mu_{\tilde{R}}(yx)$ for any elements $x, y \in R$. Also

$$\mu_{\tilde{R}}([x,y]] = \mu_{\tilde{R}}(y[x,z] + [x,y]z)$$
 for any elements $x,y,z \in R$.

Lemma(1,1),[7]:-

If a fuzzy subset \tilde{A} of R satisfies the property (7) then

- $(i\,)\mu_{\tilde{A}}(0)\geq\mu_{\tilde{A}}(x\,)$
- $(ii)\mu_{\tilde{A}}(-x) \ge \mu_{\tilde{A}}(x)$ for any $x, y \in R$.

<u>Lemma(1,2),[8]</u>:

Let \tilde{G} be a fuzzy subgroup of a group G and $x \in G$. Then $\mu_{\tilde{G}}(xy) = \mu_{\tilde{G}}(y)$ for every $y \in G$ if and only if $\mu_{\tilde{G}}(x) = \mu_{\tilde{G}}(0)$.

2. Main results

Definition(2,4):

 \tilde{I} is called fuzzy commutative ideal if it is fuzzy ideal and $\mu_{\tilde{I}}(xy) = \mu_{\tilde{I}}(yx)$ for $x, y \in R$.

Definition(2,5):

Let $d: R \to R$ be additive map and \tilde{R} is a fuzzy subnear-ring with membership function $\mu_{\tilde{R}}$. Then $d(\tilde{R})$ is a fuzzy set with membership function defined by $\mu_d: R \to [$,

Sameer Qasim Hassan, Mahdi Saleh Nayef

$$\mu_{d}(y) = \begin{cases} \max\{\mu_{R}(x) : x \in d^{-1}(y)\} & \text{if } d^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$
 then d is a fuzzy derivation on \tilde{R}

if satisfy the following

- i) d(xy)=xd(y)+d(x)y.
- ii) $\mu_d(d(xy)) = \max\{\min\{\mu_{\tilde{R}}(x), \mu_d(d(y))\}, \min\{\mu_d(d(x)), \mu_{\tilde{R}}(y)\}\} \ \forall x, y \in R \ .$

Example(2.1)

Let $R=\{0,1,2,3\}$ be a set with two binary operations as follows:

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	1	0
3	3	2	0	1
•	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	1	1

It is easy to see that R is near ring . Define a fuzzy subset $\mu_{\tilde{l}}: R \to [0,1]$ by

 $\mu(2) = \mu(3) < \mu(1) = \mu(0)$. We can insure that \tilde{I} is a fuzzy near ring .Let now define a nonzero derivation on $M = \{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} : x, y, z, w \in R \}$ as follows:

$$d\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 0 & -y \\ z & 0 \end{pmatrix}$$
, also $\mu_d : M \rightarrow [0,1]$, for any two elements

$$\begin{pmatrix} x_1 & y_1 \\ z_1 & w_1 \end{pmatrix}, \begin{pmatrix} x_2 & y_2 \\ z_2 & w_2 \end{pmatrix} \in M$$
, with following conditions:

$$\mu_d(0) = \mu_{\tilde{I}}(x_2) = \mu_{\tilde{I}}(x_1) = \mu_{\tilde{I}}(w_2) = \mu_{\tilde{I}}(w_1)$$

$$\min\{\mu_d(-y_1), \mu_{\tilde{I}}(w_2)\} > \mu_{\tilde{I}}(y_2), \min\{\mu_{\tilde{I}}(x_1), \mu_d(-y_2)\} > \mu_{\tilde{I}}(y_1),$$

$$\min\{\mu_d(z_1), \mu_{\tilde{I}}(x_2)\} > \mu_{\tilde{I}}(z_2)$$
 and $\min\{\mu_{\tilde{I}}(w_1), \mu_d(z_2)\} > \mu_{\tilde{I}}(z_1)$.

also
$$\mu_{\tilde{i}}(w_2) = \mu_d(w_2)$$
, $\mu_{\tilde{i}}(x_1) = \mu_d(x_1)$, $\mu_{\tilde{i}}(x_2) = \mu_d(x_2)$ and $\mu_{\tilde{i}}(w_1) = \mu_d(w_1)$.

we have that

$$\begin{split} & \mu_{d} \left(\operatorname{d} \left(\begin{pmatrix} x_{1} & y_{1} \\ z_{1} & w_{1} \end{pmatrix} \begin{pmatrix} x_{2} & y_{2} \\ z_{2} & w_{2} \end{pmatrix} \right) \right. \right) = \mu_{d} \left(\operatorname{d} \left(\begin{pmatrix} x_{1}x_{2} + y_{1}z_{2} & x_{1}y_{2} + y_{1}w_{2} \\ z_{1}x_{2} + w_{1}z_{2} & z_{1}y_{2} + w_{1}w_{2} \end{pmatrix} \right) \right) \\ & = \mu_{d} \left(\operatorname{d} \left(\begin{pmatrix} x_{1}x_{2} + y_{1}z_{2} & x_{1}y_{2} + y_{1}w_{2} \\ z_{1}x_{2} + w_{1}z_{2} & z_{1}y_{2} + w_{1}w_{2} \end{pmatrix} \right) \right) = \mu_{d} \left(\begin{pmatrix} 0 & -(x_{1}y_{2} + y_{1}w_{2}) \\ z_{1}x_{2} + w_{1}z_{2} & 0 \end{pmatrix} \right) \\ & = \begin{pmatrix} \mu_{d}(0) & \mu_{d}(-(x_{1}y_{2} + y_{1}w_{2})) \\ \mu_{d}(z_{1}x_{2} + w_{1}z_{2}) & \mu_{d}(0) \end{pmatrix} = \\ \begin{pmatrix} \mu_{d}(0) & \max\{\min\{\mu_{d}(x_{1}), \mu_{d}(-y_{2})\}, \min\{\mu_{d}(-y_{1}), \mu_{d}(w_{2})\}\} \end{pmatrix} \\ & \max\{\min\{\mu_{d}(z_{1}), \mu_{d}(z_{2})\}, \min\{\mu_{d}(w_{1}), \mu_{d}(z_{2})\}\} \end{pmatrix} \end{split}$$

From other side, we have that

$$\begin{split} & \boldsymbol{\mu} \ \, (\mathbf{d}(\begin{pmatrix} x_1 & y_1 \\ z_1 & w_1 \end{pmatrix}) . \begin{pmatrix} x_2 & y_2 \\ z_2 & w_2 \end{pmatrix} + \begin{pmatrix} x_1 & y_1 \\ z_1 & w_1 \end{pmatrix} . \mathbf{d}(\begin{pmatrix} x_2 & y_2 \\ z_2 & w_2 \end{pmatrix}) \,) \, \\ & = & \begin{pmatrix} \mu_d(0) & \mu_d(-y_1) \\ \mu_d(z_1) & \mu_d(0) \end{pmatrix} \begin{pmatrix} \mu_{\tilde{I}}(x_2) & \mu_{\tilde{I}}(y_2) \\ \mu_{\tilde{I}}(z_2) & \mu_{\tilde{I}}(w_2) \end{pmatrix} + \begin{pmatrix} \mu_{\tilde{I}}(x_1) & \mu_{\tilde{I}}(y_1) \\ \mu_{\tilde{I}}(z_1) & \mu_{\tilde{I}}(w_1) \end{pmatrix} \begin{pmatrix} \mu_d(0) & \mu_d(-y_2) \\ \mu_d(z_2) & \mu_d(0) \end{pmatrix} \end{split}$$

$$+ \begin{pmatrix} \max\{\min\{\mu_{\tilde{I}}(x_1), \mu_d(0)\}, \min\{\mu_{\tilde{I}}(y_1), \mu_d(z_2)\}\} & \max\{\min\{\mu_{\tilde{I}}(x_1), \mu_d(-y_2)\}, \min\{\mu_{\tilde{I}}(y_1), \mu_d(0)\}\} \\ \max\{\min\{\mu_{\tilde{I}}(z_1), \mu_d(0)\}, \min\{\mu_{\tilde{I}}(w_1), \mu_d(z_2)\}\} & \max\{\min\{\mu_{\tilde{I}}(z_1), \mu_d(-y_2)\}, \min\{\mu_{\tilde{I}}(w_1), \mu_d(0)\}\} \end{pmatrix}$$

Since
$$\mu_d(0) = \mu_{\tilde{I}}(x_2) = \mu_{\tilde{I}}(x_1) = \mu_{\tilde{I}}(w_2) = \mu_{\tilde{I}}(w_1)$$

$$\min\{\mu_d(-y_1), \mu_{\tilde{t}}(w_2)\} > \mu_{\tilde{t}}(y_2), \min\{\mu_{\tilde{t}}(x_1), \mu_d(-y_2)\} > \mu_{\tilde{t}}(y_1),$$

 $\min\{\mu_d(z_1), \mu_{\tilde{I}}(x_2)\} > \mu_{\tilde{I}}(z_2)$ and $\min\{\mu_{\tilde{I}}(w_1), \mu_d(z_2)\} > \mu_{\tilde{I}}(z_1)$, we get

$$= \max \left(\begin{array}{ccc} \max \{ \mu_d(0), \min \{ \mu_d(-y_1), \mu_{\tilde{I}}(z_2) \} \} & \min \{ \mu_d(-y_1), \mu_{\tilde{I}}(w_2) \} \\ \min \{ \mu_d(z_1), \mu_{\tilde{I}}(x_2) \} & \max \{ \min \{ \mu_d(z_1), \mu_{\tilde{I}}(y_2) \}, \mu_d(0) \} \end{array} \right) \\ , \left(\begin{array}{ccc} \max \{ \mu_d(0), \min \{ \mu_{\tilde{I}}(y_1), \mu_d(z_2) \} \} & \min \{ \mu_{\tilde{I}}(x_1), \mu_d(-y_2) \} \\ \min \{ \mu_{\tilde{I}}(w_1), \mu_d(z_2) \} & \max \{ \min \{ \mu_{\tilde{I}}(z_1), \mu_d(-y_2) \}, \mu_d(0) \} \end{array} \right) \right)$$

Since $\mu_{\tilde{I}}(w_2) = \mu_d(w_2)$, $\mu_{\tilde{I}}(x_1) = \mu_d(x_1)$, $\mu_{\tilde{I}}(x_2) = \mu_d(x_2)$ and $\mu_{\tilde{I}}(w_1) = \mu_d(w_1)$.

Then the final fuzzy matrix is
$$\begin{pmatrix} \mu_d(0) & \max\{\min\{\mu_d(x_1), \mu_d(-y_2)\}, \min\{\mu_d(-y_1), \mu_d(w_2)\}\} \\ \max\{\min\{\mu_d(z_1), \mu_d(x_2)\}, \min\{\mu_d(w_1), \mu_d(z_2)\}\} \end{pmatrix} \mu_d(0)$$

Hence.

$$\mu_{d}\left(d\begin{pmatrix} x_{1} & y_{1} \\ z_{1} & w_{1} \end{pmatrix}\begin{pmatrix} x_{2} & y_{2} \\ z_{2} & w_{2} \end{pmatrix}\right) = \mu_{d}\left(d\begin{pmatrix} x_{1} & y_{1} \\ z_{1} & w_{1} \end{pmatrix}\right) \cdot \begin{pmatrix} x_{2} & y_{2} \\ z_{2} & w_{2} \end{pmatrix} + \begin{pmatrix} x_{1} & y_{1} \\ z_{1} & w_{1} \end{pmatrix} \cdot d\begin{pmatrix} x_{2} & y_{2} \\ z_{2} & w_{2} \end{pmatrix}))$$

$$\frac{130}{120} = \frac{120}{120} = \frac{$$

Proposition(2,1):

let \tilde{A} be a fuzzy subset of R and $d: R \to R$ be additive map.

if $\mu_{\tilde{A}}([x,d(x)]) = \mu_{\tilde{A}}(0)$ then

$$i)\,\mu_{\tilde{A}}(xd(x)) = \mu_{\tilde{A}}(d(x)x) \tag{1}$$

$$ii) \mu_{\tilde{A}}([x,[x,d(x)]]) \ge \mu_{\tilde{A}}(x) . \tag{2}$$

poof

Assume that $\mu_{\tilde{A}}([x,d(x)]) = \mu_{\tilde{A}}(0)$, for all $x \in R$.

Then

i)
$$\mu_{\tilde{A}}(xd(x)) = \mu_{\tilde{A}}(xd(x) - d(x)x + d(x)x)$$
 from properties (7),(8), we get $\mu_{\tilde{A}}(xd(x)) \ge \min \left\{ \mu_{\tilde{A}}(xd(x) - d(x)x), \mu_{\tilde{A}}(d(x)x) \right\}$

$$= \min \left\{ \mu_{\tilde{A}}([x, d(x)]), \mu_{\tilde{A}}(d(x)x) \right\}$$
$$= \min \left\{ \mu_{\tilde{A}}(0), \mu_{\tilde{A}}(d(x)x) \right\}$$
$$= \mu_{\tilde{A}}(d(x)x).$$

Similarly, using
$$\mu_{\tilde{A}}(d(x)x - xd(x)) = \mu_{\tilde{A}}(xd(x) - d(x)x) = \mu_{\tilde{A}}(0)$$
, we get $\mu_{\tilde{A}}(xd(x)) \ge \mu_{\tilde{A}}(d(x)x)$.

Hence $\mu_{\tilde{A}}(d(x)x) = \mu_{\tilde{A}}(xd(x))$.

$$\begin{aligned} ii) \, \mu_{\tilde{A}} \big(\big[\big[x \, , d \, (x) \big], x \, \big] & \geq \min \big\{ \mu_{\tilde{A}} \big(\big[x \, , d \, (x) \big] x \, , \mu_{\tilde{A}} \big(x \, \big[x \, , d \, (x) \big] \big\} \big\} \\ & \geq \min \big\{ \min \big\{ \mu_{\tilde{A}} \big(\big[x , d \, (x) \big], \mu_{\tilde{A}} \big(x \big) \big\}, \min \big\{ \mu_{\tilde{A}} \big(x \big), \mu_{\tilde{A}} \big(\big[x \big) \big\} \big\} \big\} \\ & \geq \min \big\{ \min \big\{ \mu_{\tilde{A}} \big(0 \big), \mu_{\tilde{A}} \big(x \big) \big\}, \min \big\{ \mu_{\tilde{A}} \big(x \big), \mu_{\tilde{A}} \big(0 \big) \big\} \big\} \\ & \geq \min \big\{ \mu_{\tilde{A}} \big(x \big), \mu_{\tilde{A}} \big(x \big) \big\} \\ & = \mu_{\tilde{A}} \big(x \big) \end{aligned}$$

Hence

$$\mu_{\tilde{A}}([[x,d(x)],x]) \ge \mu_{\tilde{A}}(x)$$
 for any $x \in R$.

Corollary(2,1):

let \tilde{A} be a fuzzy subset of R and $d: R \to R$ be additive map. If $\mu_{\tilde{A}}([x,d(x)]) = 0$ then $\mu_{\tilde{A}}(xd(x)) = \mu_{\tilde{A}}(d(x)x) = 0$.

<u>Theorem(2,1)</u>:

Let d be derivation admits on a near- ring R , and \tilde{R} a fuzzy subnear-ring of R

.If
$$y \in d^{-1}d(x)$$
 for $x, y \in R$, $x \in d^{-1}d(y)$ and $\mu_d(d(x)) = \sup_{t \in d^{-1}(d(x))} \mu_{\tilde{R}}(t)$ then

ملحق العدد الخامس والسبعون 2012

$$\overline{\mu_{\tilde{R}}(d(xy))} \ge \min \left\{ \mu_{\tilde{R}}(x), \mu_{\tilde{R}}(y) \right\}.$$

Proof

Let d be a derivation on a near-ring R and, and \tilde{R} fuzzy subnear-ring of R. By definition (2.5), we have that

$$\mu_d(d(xy)) = \mu_{\tilde{p}}(xd(y) + d(x)y)$$
, then

by definition (1.3) (7) and definition (2.5), we obtain

$$\begin{split} & \mu_{d}(d(xy)) \geq \min \left\{ \mu_{\tilde{R}}(d(x)y), \mu_{\tilde{R}}(xd(y)) \right\} \\ & \geq \min \left\{ \min \left\{ \mu_{d}(d(x)), \mu_{\tilde{R}}(y) \right\}, \min \left\{ \mu_{\tilde{R}}(x), \mu_{d}(d(y)) \right\} \right\} \\ & = \min \left\{ \min \left\{ \sup_{t \in d^{-1}(d(x))} \mu_{\tilde{R}}(t), \mu_{\tilde{R}}(y) \right\}, \min \left\{ \mu_{\tilde{R}}(x), \sup_{t \in d^{-1}(d(y))} \mu_{\tilde{R}}(t) \right\} \right\} \end{split}$$

From $y \in d^{-1}d(x)$ and $x \in d^{-1}d(y)$ for $x, y \in R$, we obtain

$$\min\left\{\min\left\{\sup_{t\in d^{-1}(d(x))}\mu_{\tilde{R}}(t),\mu_{\tilde{R}}(y)\right\},\min\left\{\mu_{\tilde{R}}(x),\sup_{t\in d^{-1}(d(y))}\mu_{\tilde{R}}(t)\right\}\right\}$$

$$\geq \min \left\{ \min \left\{ \mu_{\tilde{R}}(x_0), \mu_{\tilde{R}}(y) \right\}, \min \left\{ \mu_{\tilde{R}}(x), \mu_{\tilde{R}}(y_0) \right\} \right\}$$
 for some x_0 , $y_0 \in R$
$$\geq \min \left\{ \mu_{\tilde{R}}(x), \mu_{\tilde{R}}(y) \right\}.$$

Hence

$$\mu_d(d(xy)) \ge \min \{\mu_{\tilde{R}}(x), \mu_{\tilde{R}}(y)\}$$

Lemma(2,3):

Let \tilde{R} be a fuzzy subnear ring of R and d is derivation of a near-ring R then for any $x, y \in R$

$$(i)\mu_{\tilde{R}}(0) \geq \mu_{\tilde{R}}(d(x)x)$$

$$(ii)\mu_{\tilde{R}}(-xd(x)) \geq \mu_{\tilde{R}}(xd(x))$$

$$(iii)\mu_{\tilde{R}}(d(x-y)) \ge \min\left\{\mu_d(d(x)), \mu_d(d(y))\right\}$$

$$(v)\mu_{\tilde{R}}((d(x)x+xd(x)) \ge \min\left\{\mu_{\tilde{R}}(x), \mu_d(d(x))\right\}$$

Proof

 $\overline{\text{(i)}}$ we have that for any $x \in R$

$$\mu_{\tilde{R}}(0) = \mu_{\tilde{R}}(d(x)x - d(x)x)$$
. By (7), we get
$$\mu_{\tilde{R}}(-xd(x)) = \mu_{\tilde{R}}(0 - xd(x)) \ge \min\{\mu_{\tilde{R}}(0), \mu_{\tilde{R}}(xd(x))\} = \mu_{\tilde{R}}(xd(x))$$

For all $x \in R$.since x is arbitrary, we conclude that

$$\mu_{\tilde{R}}(-xd(x)) \ge \mu_{\tilde{R}}(xd(x))$$

(iii) Since d is additive map, thus

$$\mu_{\tilde{R}}(d(x-y)) = \mu_{\tilde{R}}(d(x)-d(y)) \ge \min \{\mu_d(d(x)), \mu_d(d(y))\}$$

(v) It is clear.

<u>Theorem(2,2):-</u>

Let \tilde{R} be a fuzzy near ring and \tilde{U} is a nonzero semifuzzy left ideal .If \tilde{R} admits a fuzzy derivation d which is nonzero on \tilde{U} such that $\mu_{\tilde{U}}([x,d(x)]) \in \mu_{C(\tilde{R})}$, then \tilde{V} is a nonzero fuzzy commutative ideal of R.

In order to prove the theorem we need the following lemma, which shows under certain conditions a fuzzy centralizing derivation is equal $\mu(0)$.

Lemma(2,4):-

Let \widetilde{R} be a fuzzy near ring and \widetilde{U} is a semifuzzy left ideal of \widetilde{R} , if d is a fuzzy derivation of R which is $\mu_{\widetilde{U}}([x,d(x)]) \in \mu_{C(\widetilde{R})}$. then $\mu_{\widetilde{U}}([x,d(x)]) = \mu_{\widetilde{U}}(0), \forall x,y \in U$.

proof

since d is a fuzzy derivation of \tilde{R} which is centralizing on \tilde{U} . Thus $\mu_{\tilde{U}}([x,d(x)]) \in \mu_{C(\tilde{R})}$

(3)

Replacing x be x^2 in (3), we get:

$$\mu_{\tilde{U}}(\left[x^2,d(x^2)\right])$$

$$=\mu_{\tilde{U}}(\left[x^2,xd(x)+d(x)x\right])$$

$$= \mu_{\tilde{U}}(4x^2[x,d(x)]) \in \mu_{C(\tilde{R})}$$

(4)

Commuting last equation with d(x), and since (4) is in $C(\tilde{R})$, yield

$$\mu_{\tilde{U}}(4\left[x^{2}\left[x,\tilde{d}(x)\right],d(x)\right]=0)$$

(5)

Thus

$$\mu_{\tilde{U}}(8x[x,d(x)]^3) = \mu_{\tilde{R}}(0)$$

(6)

Therefore

$$\mu_{\tilde{U}}(8x[x,d(x)]^2) = \mu_{\tilde{R}}(0) = \mu_{\tilde{U}}(8x[x,d(x)][x,d(x)])$$

Since \tilde{U} is semifuzzy left ideal , we have

$$\mu_{\tilde{U}}([x,d(x)]) = \mu_{\tilde{R}}(0).$$

Definition(2.6):-

 \tilde{I} is a fuzzy Maximal ideal in a near ring R if there is no fuzzy ideal \tilde{J} in R such that $\mu_{\tilde{I}}(x) \le \mu_{\tilde{I}}(y)$ for $x, y \in R$.

Lemma(2,5):-

Any fuzzy near ring \tilde{R} has a fuzzy family $\tilde{\Omega} = \left\{ \tilde{P}_{\alpha} / \alpha \in \lambda \right\}$ of fuzzy maximal

Sameer Qasim Hassan, Mahdi Saleh Nayef

ideal such that $\mu_{\bigcap \tilde{P}_{\alpha}}(x) = \mu_{\tilde{R}}(0)$ for any $x \in R$.

proof

Let $(a_1, \mu_{\tilde{R}}(a_1)) = (a_0^2, \mu_{\tilde{R}}(a_0^2))$ be anon zero fuzzy element of the fuzzy near ring \widetilde{R} , also $(a_2, \mu_{\widetilde{R}}(a_2)) = (a_1^2, \mu_{\widetilde{R}}(a_1^2))$, so continuing this process, we get a countable elements sequence nonzero fuzzy $(a_0, \mu_{\tilde{R}}(a_0)), (a_1, \mu_{\tilde{R}}(a_1)), (a_2, \mu_{\tilde{R}}(a_2)) ... (a_{n+1}, \mu_{\tilde{R}}(a_{n+1})) = (a_n, \mu_{\tilde{R}}(a_n)) ...$

let \widetilde{M} be the set of all fuzzy ideals of \widetilde{R} that contain no elements of this sequence. \tilde{M} is not empty since the zero fuzzy ideal is an element in \tilde{M} . By Zorn's lemma the set \tilde{M} contains a maximal fuzzy element say \tilde{p}_{a_0} , the ideal dose not intersect the sequence $(a_0, \mu_{\tilde{R}}(a_0)), (a_1, \mu_{\tilde{R}}(a_1)), (a_2, \mu_{\tilde{R}}(a_2)), \dots (a_n, \mu_{\tilde{R}}(a_n))$ but any fuzzy ideal containing \tilde{p}_a has a nonempty intersection with this sequence . Now since $(a, \mu_{\tilde{R}}(a)) \notin \tilde{p}_a$, then $\mu_{\bigcap \tilde{P}_a}(x) = \mu_{\tilde{R}}(0)$ for any $x \in R$.

Proof of theorem (2,2)

By lemma (2.4), we have that

$$\mu_{\tilde{U}}([x,d(x)]) = \mu_{\tilde{R}}(0)$$
, replacing x by $x + y$, we obtain

$$\mu_{\tilde{U}}(\left[x+y,d(x+y)\right])=\mu_{\tilde{R}}(0)$$

$$\mu_{\tilde{U}}([x,d(x+y)]+[y,d(x+y)])=\mu_{\tilde{R}}(0)$$

$$\mu_{\tilde{U}}(\left[x,d(x)\right]+\left[x,d(y)\right]+\left[y,d(x)\right]+\left[y,d(y)\right])=\mu_{\tilde{R}}(0)$$

From (7), we obtain

$$\mu_{\tilde{R}}\left(0\right)\geq\min\left\{\mu_{\tilde{U}}\left(\left[x,d\left(x\right)\right]\right),\mu_{\tilde{U}}\left(\left[x,d\left(y\right)\right]\right),\mu_{\tilde{U}}\left(\left[y,d\left(x\right)\right]\right),\mu_{\tilde{U}}\left(\left[y,d\left(y\right)\right]\right)\right\}\quad\text{for }x,y\in U\;.$$

Also from lemma(2.4), we get

$$\mu_{\tilde{R}}(0) \ge \min \{ \mu_{\tilde{R}}(0), \mu_{\tilde{U}}([x,d(y)]), \mu_{\tilde{U}}([y,d(x)]) \}$$

From lemma(1.1), we have that

$$\mu_{\tilde{R}}(0) \ge \min \{ \mu_{\tilde{I}}([x, d(y)]), \mu_{\tilde{I}}([y, d(x)]) \}$$
(7)

Replacing y by yx in (7), we get

$$\mu_{\tilde{\kappa}}(0) \ge \min \left\{ \mu_{\tilde{\iota}\tilde{\iota}}([x,d(yx)]), \mu([yx,d(x)]) \right\}$$

$$\geq \min \left\{ \mu_{\tilde{l}}\left(\left[x, d\left(yx \right) \right] \right), \mu_{\tilde{l}}\left(\left[xy, d\left(x \right) \right] \right) \right\}$$

$$\geq \min \{ \mu_{\tilde{U}}([x,d(y)x] + [x,yd(x)]), \mu_{\tilde{U}}(x[y,d(x)] + [x,d(x)]y) \}$$

$$\mu_{\tilde{R}}(0) \ge \min \left\{ \mu_{\tilde{U}}([x,d(y)]x + d(y)[x,x] + [x,y]d(x) + y[x,d(x)], \mu_{\tilde{U}}(x[y,d(x)] + [x,d(x)]y) \right\}$$
(8)

Since $\mu(y[x,d(x)]) = \mu(0)$, [x,x] = 0 and (8), become

$$\mu_{\tilde{R}}(0) \ge \min \left\{ \mu_{\tilde{U}}([x,d(y)]x + [x,y]d(x)), \mu_{\tilde{U}}(x[y,d(x)]) \right\}$$

$$= \min \left\{ \min \left\{ \mu_{\tilde{U}}([x, d(y)]x), \mu(x[y, d(x)]), \mu([x, y]d(x)) \right\} \right\}$$

$$(9)$$

Sameer Qasim Hassan, Mahdi Saleh Nayef Since
$$\mu_{\tilde{U}}([x,d(y)]x) = \mu_{\tilde{U}}(x)$$
, $\mu_{\tilde{U}}(x[y,d(x)]) = \mu_{\tilde{U}}([y,d(x)])$ and (9), yield

$$\mu_{\tilde{R}}(0) \ge \min \left\{ \min \left\{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}([y,d(x)]), \mu_{\tilde{U}}([x,y]d(x)) \right\} \right\}$$

$$\geq \min \left\{ \min \left\{ \mu_{\tilde{U}}(x), \min \{ \mu(y), \mu_d(d(x)) \}, \mu_{\tilde{U}}([x, y]d(x)) \right\} \right\}, \text{ hence,}$$

$$\mu_{\tilde{R}}(0) \ge \mu_{\tilde{U}}([x,y]d(x))$$

By replacing y by wy for arbitrary $w \in U$

$$\mu_{\tilde{t}}([x,wy]d(x)) = \mu_{\tilde{t}}(w[x,y]d(x) + [x,w]yd(x))$$

From properties (7),(8) of semi fuzzy left ideals \tilde{U} , yield

$$\mu_{\tilde{U}}(w[x,y]d(x)+[x,w]yd(x)) \ge \mu_{\tilde{U}}([x,w]yd(x))$$

Thus

$$\mu_{\tilde{R}}(0) \geq \mu_{\tilde{U}}(\left[x\,,w\,\right]yd\left(x\,\right)) \quad for \, all \quad y \in U$$

Since $RU \in U$, we obtain

$$\mu_{\tilde{R}}(0) \ge \mu_{\tilde{U}}([x,y]Ud(x))$$

From lemma (2.5), we get

$$\mu_{\bigcap_{0 \neq a \in R} \tilde{P}_a}(z) = \mu_{\tilde{R}}(0) \ge \mu_{\tilde{U}}([x, y]Ud(x)) \text{ for any } z \in R.$$

Therefore

$$\mu_{\tilde{U}}([x,y]Ud(x)) \le \min \{\mu_{\tilde{p}_{\alpha}}(z)\}_{\alpha \in \lambda} \text{ for any } z \in R.$$

a)
$$\mu_{\tilde{U}}([x,y]) \le \mu_{\tilde{p}_{\alpha}}(z) \quad \forall \alpha \in \lambda \quad z \in R.$$

Or

b)
$$\mu_{\tilde{\mu}_{d}(\tilde{a})}(x) \le \mu_{\tilde{p}_{\pi}}(z) \quad \forall \alpha \in \lambda \quad z \in R.$$

Let $\tilde{P_1}$ and $\tilde{P_2}$ be respectively the intersections of all type-one and type-two fuzzy maximal ideal such that $\mu_{\tilde{P}_i \cap \tilde{P}_i}(z) = \{0\}$ $z \in R$.

Now we investigate a typical-two maximal $\tilde{P}_2 = \tilde{P}_{\alpha}$, from (b) and the fact that $\mu_{\tilde{U}}([x,d(x)]) = \mu_{\tilde{R}}(0) .$

For all $x \in U$, we have from proposition(2.1) that $\mu_{\tilde{t}}(xd(x)) = \mu_{\tilde{t}}(d(x)x)$ and $\mu_{\tilde{U}}(d(x)x) \le \mu_{\tilde{P}_2}(z)$ for any $z \in R$.

Thus,

$$\mu_{\tilde{U}}(x+y)d(x+y)) \le \mu_{\tilde{P}_{2}}(z) \quad \forall x, y \in U$$

$$\Rightarrow \mu_{\tilde{U}}((x+y)(d(x)+d(y))) \leq \mu_{\tilde{p}_{s}}(z)$$

$$=\mu_{\tilde{U}}\left(xd\left(x\right)+xd\left(y\right)+yd\left(x\right)+yd\left(y\right)\right)\leq\mu_{\tilde{P}_{2}}(z)$$

But
$$\mu_{\tilde{U}}(xd(x))$$
 and $\mu_{\tilde{U}}(yd(y) \le \mu_{\tilde{P}_2}(z))$

Thus

$$\min\{\mu_{\tilde{U}}(xd(y)), \mu_{\tilde{U}}(yd(x))\} \le \mu_{\tilde{P}_{2}}(z), \ z \in R.$$
(10)

ملحق العدد الخامس والسبعون 2012

Sameer Qasim Hassan, Mahdi Saleh Nayef

and the same way $\mu_{\tilde{U}}(d(x+y)(x+y)) \le \mu_{\tilde{P}_2}(z)$, we have that :

$$\min\{\mu_{\tilde{l}}(d(x)y), \mu_{\tilde{l}}(d(y)x)\} \le \mu_{\tilde{p}}(z)$$

$$\tag{11}$$

From (10) and (11), we have that,

$$\min \left\{ \min \left\{ \mu_{\tilde{U}}(d(x)y), \mu(d(y)x) \right\}, \min \left\{ \mu(xd(y)), \mu(yd(x)) \right\} \right\} \le \mu_{\tilde{P}_{0}}(z)$$
(12)

Replacing x by z and y by xy + yx in (12), we get $\min\{\min\{\mu_{\tilde{U}}(d(z)(xy+yx)), \mu_{\tilde{U}}(d(xy+yx)z)\}, \min\{\mu_{\tilde{U}}(zd(xy+yx)), \mu_{\tilde{U}}(zd(xy+yx)), \mu_{\tilde{U}}(zd(xy+yx))\}\}$

$$\mu_{\tilde{U}}((xy+yx)d(z))\} \le \mu_{\tilde{E}_{1}}(z_{1}), \qquad z_{1} \in R.$$

So from (12), we get

$$\min\{\min\{\mu_{\tilde{U}}(xy+yx),\mu_{\tilde{U}}(z)\},\min\{\mu_{d(\tilde{U})}(d(xy+yx),\mu_{d(\tilde{U})}(d(z))\}\leq\mu_{\tilde{E}_{s}}(z_{1}) \qquad z_{1}\in R,$$

(13) implies to

$$\min\{\min\{\mu_{\tilde{U}}(y),\mu_{\tilde{U}}(x),\mu_{\tilde{U}}(z)\},\min\{\mu_{d(\tilde{U})}(d(y),\mu_{d(\tilde{U})}(d(x)),\mu_{d(\tilde{U})}(d(z))\}\leq \mu_{\tilde{P_2}}(z_1)$$

Since all above relations worked with $\forall x, y, z \in U$, thus

$$\min\{\min\{\mu_{\tilde{U}}\left(U\right),\mu_{\tilde{U}}\left(U\right),\mu_{\tilde{U}}\left(U\right)\},\min\{\mu_{d\left(\tilde{U}\right)}\left(d\left(U\right),\mu_{d\left(\tilde{U}\right)}\left(d\left(U\right)\right),\mu_{d\left(\tilde{U}\right)}\left(d\left(U\right)\right)\}\leq\mu_{\tilde{p_{j}}}(z_{1})$$

Hence $\min \left\{ \mu_{\tilde{U}}(U), \mu_{d(\tilde{U})}(d(U)) \right\} \leq \mu_{\tilde{P}_2}(z)$, which implies to the following $a')\mu_{\tilde{P}_2}(R) \geq \mu_{d(\tilde{U})}(d(U))$

Or

$$b'$$
) $\mu_{\tilde{P}_{2}}(R) \geq \mu_{\tilde{U}}(U)$

So if (b') satisfied that, make condition (a) also satisfied and obtain contradiction of our definition of type two. Therefore

$$\mu_{d(\tilde{U})}(d(u)) \le \mu_{\tilde{P}_2}(r) \quad \text{for any} \quad u \in U, r \in R.$$
 (14)

From (b), we have d(u)u = ud(u), thus $\mu_{\tilde{U}}(d(u)u) = \mu_{\tilde{U}}(ud(u)) \le \mu_{\tilde{P}_2}(z_1)$.

Since

$$\min\{\mu_{\tilde{U}}(rd(r)d(u)), \mu(u)\} \leq \mu_{\tilde{U}}(rd(r)d(u)u) = \mu_{\tilde{U}}(d(u)u) = \mu_{\tilde{U}}(ud(u)) \leq \mu_{\tilde{P}_{2}}(z_{1})$$

$$\min\{\min\{\mu_{\tilde{R}}(rd(r)), \mu_{d(\tilde{U})}(d(u))\}, \mu_{\tilde{U}}(u)\} \leq \mu_{\tilde{P}_{2}}(z_{1}), \quad \text{there are two cases}$$

$$\min\{\mu_{\tilde{R}}(rd(r)), \mu_{\tilde{U}}(u)\} \leq \mu_{\tilde{P}_{2}}(z_{1}) \quad (15)$$

or

$$\min\{\mu_{d(\tilde{U})}(d(u)), \mu_{\tilde{U}}(u)\} \le \mu_{\tilde{P}_{1}}(z_{1})$$
(16)

By () ,we get
$$\mu_{\tilde{R}}(rd(r)) \le \mu_{\tilde{P}_2}(z_1)$$
 or $\mu_{\tilde{U}}(u) \le \mu_{\tilde{P}_2}(z_1)$

But the second parte is not true, we have that $\mu_{\tilde{R}}(rd(r) \le \mu_{\tilde{P}_{0}}(z_{1})$

Consider now the fuzzy left ideal \tilde{V} generated by the set $(d(R)U, \mu_{\tilde{U}}(d(R)U))$, we shall show that \tilde{V} is commutative. Atypical element of \tilde{V} are of the form $(d(r)u, \mu_{\tilde{U}}(d(r)u))$ and $(sd(r)u, \mu_{\tilde{U}}(sd(r)u))$, where $r, s \in R$ and $u \in U$. So we need only show that the commutators of the form

ملحق العدد الخامس والسبعون 2012

Sameer Qasim Hassan , Mahdi Saleh Nayef $[d(r_1)u_1,d(r_2)u_2],[s_1d(r_1)u_1,d(r_2)u_2]$ and $[s_1d(r_1)u_1,s_2d(r_2)u_2]$ are equal to zero.

By using (a), we obtain

$$\mu_{\tilde{U}}([d(r_1)u_1,d(r_2)u_2]) \le \mu_{\tilde{P}_1}(z_1),$$

$$\mu_{\tilde{U}}([s_1 d(r_1)u_1, d(r_2)u_2]) \le \mu_{\tilde{P}}(z_1), \tag{17}$$

and
$$\mu_{\tilde{l}}([s_1d(r_1)u_1, s_2d(r_2)u_2]) \le \mu_{\tilde{l}}(z_1)$$

Also

$$\left[d(r_{1})u_{1},d(r_{2})u_{2}\right],\left[s_{1}d(r_{1})u_{1},d(r_{2})u_{2}\right],\left[s_{1}d(r_{1})u_{1},s_{2}d(r_{2})u_{2}\right]\in Rd(R)$$

The form (17), we have that

$$\mu_{\tilde{U}}\left(\left[d\left(r_{1}\right)u_{1},d\left(r_{2}\right)u_{2}\right]\right)\leq\mu_{\tilde{P_{2}}}(z_{1}),$$

$$\mu_{\tilde{U}}([s_1 d(r_1)u_1, d(r_2)u_2]) \le \mu_{\tilde{p}_1}(z_1), \tag{18}$$

and
$$\mu_{\tilde{U}}([s_1d(r_1)u_1, s_2d(r_2)u_2]) \le \mu_{\tilde{p}_1}(z_1)$$

From (17) and (18), we get

$$\mu_{\tilde{U}}([d(r_1)u_1,d(r_2)u_2]) \le \min\{(\mu_{\tilde{P_1}}(z),\mu_{\tilde{P_2}}(z))\} = \mu_{\tilde{P_1}\cap\tilde{P_2}}(z)$$

$$\mu_{\tilde{U}}([s_1d(r_1)u_1,d(r_2)u_2]) \le \min\{(\mu_{\tilde{P}_1}(z),\mu_{\tilde{P}_2}(z))\} = \mu_{\tilde{P}_1\cap\tilde{P}_2}(z)$$
 for any $z \in R$.

and
$$\mu_{\tilde{U}}([s_1d(r_1)u_1,s_2d(r_2)u_2]) \le \mu_{\tilde{P}_1 \cap \tilde{P}_2}(z)$$

Hence by lemma (2,5), we obtain \tilde{V} is fuzzy commutative ideal.

References:

- [1] Abou-Zaid., S., "On fuzzy subnear-rings and ideals", Fuzzy Sets and Sys. 44(1991),139-146.
- [2] Clay, Nearrings J.R.; "Geneses and Applications", Oxford, NewYork(1992).
- [3] Dixit V.N., Kumar R.and Ajal N., "On fuzzy rings", Fuzzy Sets and Sys.49(1992),205-213.
- [4] Dubois D. and Prade H. "Fuzzy sets and systems theory and Applications" Mathematics in science and Engineering Vol.144(1980).
- [5] Liu W., "Fuzzy invariant subgroups and fuzzy ideals", Fuzzy Sets and Sys.*(1982),133-139.
- [6] Samer kasim & Muhsin Jabel., "Derivation of Semiprime Ring", proceeding of 3rd scientific conference of the College of Science, University of Baghdad. 24 to 26 March 2009.
- [7] Seung Dong Kim & Hee Sik Kim ." On Fuzzy Ideals Of Near-Ring", Bull.Korean Math. Soc. 33(1996), No. 4,pp. 593-601.
- [8] vasantha Kandasamy W.B., "Smarandache Fuzzy Algerbra", American research press. 2003.
- [9] Zadeh L. A. "Fuzzy sets" Inform contr. (1965), pp. 338-353.

اليكن \tilde{R} حلقة قرب جزئية ضبابية من الحلقة R وليكن \tilde{U} مثالي ايسر شبه ضبابي معرف على Rكذلك d تطبيق أضافة على R . أن الغرض من هذا البحث هو برهنة مايلي أذا كانت \widetilde{R} تسمح بأشتقاق

ملحق العدد الخامس و السبعون 2012

On Fuzzy Derivation Of Fuzzy Near-ring	
Sameer Qasim Hassan, Mahdi Sal	eh Nayef
V ذي يكون متمركز ضبابيا على \widetilde{U} ، فأن Γ تحوي مثالي ابدالي ضبابي V .	صبابي d ال