Theoretical Estimation of the Autocorrelation Postulate for Nonlinear
Sequences Generated from Threshold..Faez Hassan Ali and Sabah Mahmood Shaker

Theoretical Estimation of the
Autocorrelation Postulate for Nonlinear
Sequences Generated from Threshold

Faez Hassan Ali

Sabah Mahmood Shaker
College of Science/Al-Mustansiriya University

Abstract

The Randomness is one of the basic criterions to measure Key Generator
Efficiency. The key generator depends basically on Linear FeedBack Shift
Register which is considered as one of the basic units of Stream Cipher Systems.
In this paper, the autocorrelation postulate, which one of the basis of
Randomness criteria, is calculated theoretically for non-linear key generator
before it be implemented or constructed (software or hardware), this procedure
save time and costs. A nonlinear key generator is chosen to apply the theoretical
studies, this key generator is the Threshold.

1. Introduction

Linear Feedback Shift Register (LFSR) and Combining Function (CF) are
considered as basic units to construct key generator (KG) that used in Stream
Cipher Systems (SCS) [1]. Any weakness in any one of these units means clear
weakness in KG sequence, so there are some conditions must be available in KG
before it is constructed; therefore the KG efficiency is concluded.

In this paper, some studies are applied on the KG sequences to determine the
sequence autocorrelation. The Basic efficiency for KG can be defined as the
ability of KG and its sequence to withstand the mathematical analytic which the
cryptanalyst applied on them, this ability measured by some basic criterions, the
most important is the randomness, one of the randomness postulates is the
autocorrelation postulate.

In the next part of this paper, the autocorrelation postulate of randomness
criterion will be discussed in details and introduce the basic conditions to obtain
efficient KG specially those related to autocorrelation. It’s important to mention
that the zero input sequences must be avoided, this done when the non-all zeros
initial values for LFSR’s are chosen.

Let KG consist of n-LFSR’s have lengths ry,r;,..,Iy respectively with
CF=F(X1,Xo,...,X5), S.t. X;e{0,1} 1<i<n, represents the output of LFSR;, let
S={s0,51,...} be the sequence product from SCG and s;, j=0,1,... represents

elements of S. let S; be the sequegge i_product from LFSR; with a; elements
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1<i<n, j=0,1,...,.
2. Conditions of the Theoretical Estimation
Definition (1) [2]: Let GCD2=gcd(ﬁ m, ,m,.GCD;)=gcd(m,m,), for convenient

let GCD,=1 and so on the general form of the recursion equation will be:
n-1

GCDy=gcd(] [m; ,mn.GCDy.1) ...(1)
i=1

where n>2 s.t mi are positive integers, V1<i<n.

Let the sequence S has period P(S), the period of LFSR; denotes by P(S;),
P(S) and P(S;) are least possible positive integers, so

P(S)=Icm(P(S1),P(S,),....P(Sy)) ...(2)
11P6s)
P(S)=—t .(3)

GCD, (P(,)
1. GCD,(P(S))=gud {ﬁwsi),P<sn>-GCDn_1(P<si»}

If P(S;) are relatively prime with each other this mean GCD,(P(S;))=1 this
implies [2]:

P(S):f[P(Si) (4

It’s known earlier that P(S;) <2" -1, and if the LFSR; has maximum period then
P(S)= 2" -1[3].
Theorem (1) [2]

P(S)=ﬁ(2’i —1)if and only if the following conditions are holds:

i=1
1. GCD,(P(S))=1.,.
2. the period of each LFSR has maximum period (P(S;)=2" -1).
3. Randomness
The sequence that is satisfied the 3-randomness properties called Pseudo
Random Sequence (PRS) [3]. The randomness criterion depends on LFSR’s and
CF units, therefore from the important conditions to get PRS is, the sequence
must be maximal and CF must be balance [4].
To guarantee the KG to produces PRS, the sequence must pass randomness
tests with complete period, these tests applied into two ways, on: [1]
1. Global sequence for complete period and that is the right way (but it’s
hard to applied for high periods).
2. Local sequence for many times for various lengths less than the origin
length.
In this part, the 1% way will be appk
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If GCDW(P(S)))=1 then,

P(S)= 2éri + (D)% e 27T (<) (2 44 27) + (<D)" ...(5)
Let R! denotes the combination to sum m of numbers r; from n of the
numbers r;, Ry, denotes the set of all possibilities of R| s.t.
(P P ¢

n
RL =| @
Zrii
j=1

0<m<n, 1<i<n, te {1,2,...,Cn"}
define Ry={Ro'}, Ro'=O0.

For instance let m=1 then R, ={R},R?,...,R%},RI =r,..,R! =T
If m=n then R,={R,'}, Rr]1=zn“ri

So equation (5) can be WritteI: in compact formula:

P(S) =332 ..(6)

Golomb deduced three theorems about the maximal sequence generated from
LFSR [3]. One of the three Golomb’s theorems deduced from the
autocorrelation postulate. In the next sections we will introduce new theorems,
as Golomb did on LFSR.

4. Autocorrelation Postulate

Before we involve in details of calculating this part of randomness criterion
we have to give some preliminaries.

Let S;= {aj}?jif"l be the sequence generated from maximum LFSR, s.t. a;e{0,1}.

n corresponding let Q.= b, "~~~ denotes the transform sequence gotten from the
| ding let Qi=b, > denotes the transf tten from th

following linear transform:

b=1-2a ..(7)

Where bje{-1,1}.

a=0,1, then is corresponding b=1, -1 respectively.

Definition (2) [3]: When the LFSR has maximum period s.t. P(S,)=2"-1, then
its can generates k sequences Ay, 1<k<P(S,)-1, each generated using the initial
vector vy S.t. A=, }J?jj*l, (Ai={0,0,...,0}), then the set A={A¢As,...,Apsn-1}

with XOR @ operation (A,®) form a group.

P(Sr)_l P(Sr )_1

Golomb mentioned that for MS the »a,=1 and )b, =-1, and
i=0 i=0
P(S))=P(Qr)=Noq(1)+Nq(-1).
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Definition (3): Let By=1o, }_P:frH be the corresponding to A, mentioned above

when 0<k<P(S))-1, (Bo={1,1,...,1}), then they form a set B={Bg,By,...,Bpsn-1}-
Lemma (1) [3]:
Let B={Bo.B1,...,Bp(-1} be a non-empty set as defined above, then (B,) is a

group.
As known:

a1 ta,=a@a,da a, e (8)
and

aPa,=a;+a-2a;a, ...(9)

Definition (4) [3]: Lets C,(t) be the auto correlation function of maximal
sequence which is generated from LFSR with length r and shifted by integer t
S.t

C.(x) =——d (r), where

P@S))
P [P t=0,P(S,)
d, (x) = kzol bkbkﬂ—{ 1 0<teps) ...(12)

Remark (1): d(t) can represents the difference between N, (1) and
N(-1) of the sequence Q, after shifted by .

Definition (5) [2]: The auto correlation function Cs(t) of the sequence S (or
the corresponding sequence Q) which is generated from system of LFSR's can

be defined as follows:
1

Cs(r):ﬁds(t), where }
P(S)-1
ds(T): quqk+‘t °-°(13)

Where qxe{-1,1} is the element k of the sequence Q.
Remark (2): ds(t) represents the difference between Ng(1) and Ng(-1) of the
sequence Q after shifted .
Definition (6) [2]: Let T,denotes the combination to multiply k of P(S;) from
the total number n of P(S;), 1<i<n.
Let Ty denotes the set of all possibilities of T, s.t.
P(S,)...P(S,)
T, { ﬁP(Si ) } 0<k<n te{l,2,..., C{},

we defined T={T'}, T!=1
For instance, let k=1, then T,={ T, 77,...T"}, T/=P(S)), 1<i<n.
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When k=n, then T,={T'},s.t. T! =f[P(Sj)
=1

Definition (7) [2]: Let the CF be F, st F,:A—>{0,1}, let H, be the
corresponding function of F, s.t. H,:B—{-1,1}.

Lemma (2): If F, is the linear function s.t. s=F,(aj,a,)=a;®a,, then
q=H2(b1,b;)=b1.b;

Where s and q are the output element of the functions F, and H, respectively.
Proof: By using equation (7):

s=Y%(1-q) ...(14)

From equation (9):

S= Fg(al,a2)=a1@a2= a;ta,-2a;a

Reuse equation (7) in a; and b; we get:

s = %[ (1-by)+(1-b,)]-2(1-b,)(1-b,) ...(15)
When simplify equation (15) we get:

S= 1/2[1-b1b2] .. (16)
Compare equation (16) with (14) we get:

q:Hz(bl,bz):bl.bz [ |

The next lemma discusses the behavior of H, when F, is the product function.
Lemma (3): If F, is the product function s.t.
s =F,(a;,a,) =a;.a,, then:

0=Ha(b1,b2)= Ab; = 1-2(1-D1)(1-b;) -..(17)
Where A (read delta) represents the multiple of (x) operation (it can be denoted
by *).

Proof:

S = a;.8, = ¥2(1-b;).%2(1-by) = Ya(1-b;).%2(1-by)
Since s =%2 (1-q), then q=1-2s
 9e= 1770
..25—51;[(1 b;)
2 1 2

'.’q:ébi :1_§H(1_bi) .
Of course, if GCD,(P(Si))=1, then:
qm:Hn(blm,me,- .,bam), m=0,1,...,P(S)-1.

Golomb [3] mentioned that if the algebraic system ({0,1},&®,e) form a filed,
then algebraic system ({-1,1},x,*) is a filed too [3], s.t. 1 and -1 are identity
elements of the operations x and * respectively, s.t.

* |1 -1

1 1 1
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%

Because of 3™ Golomb's theorem, two states can be concluded where
0<t<P(S)-1, when we focus in the state which we notice that the frequency of
t£0(modT,), V1<k<n, is more than other states, this state occurs exactly

®(P(S)) times, since its represents the number of the relatively prime numbers
with P(S). Actually, we know that P(S)=11[Pi =ﬁ(2“ —1)=ﬁp?i , Where p; are

primes chosen as large as possible and g; are non-negative integers, then p;-1
approaches p;, that implies ®(P(S)) approaches P(S), and that what will proved
in the next lemma.

Lemma (4): The proportion of ®(P(S)) to P(S) is approach 1.

Proof:

T (p. 1) TT(p. 1
(D(P(S)):];[p. (p; ):l;l(p. ) 18)

Pe) Hp?i Hpi
i=1 i=1

In equation (18) as p; be large as possible = pi-1—p.

. ©(PO)) 1 ]
) :
Example (1):

Table (1) shows the proportion of ®(P(S)) to P(S) for various lengths.

Table (1) the proportion of ®(P(S)) to P(S) for various lengths.

n_ i Ps) P o) | Proportion |

, 93 60

3,31

7,15 105 48

3,7,31 651 360
7,31,127 27559 22580
31,127,8191 32247967 30958200

5. Threshold System (3-TSCG)

This SCG as usual using CF called Majority function which is balance and
symmetric (which expect that the 3-TSCG will produces PRS). This generator
illustrated in figure (1) tries to get around the security problems by using a
variable number of LFSR’s [4]. The theory is that if you use a lot of LFSRs, it’s
harder to break the cipher.
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LFSR1 >
L Output
LFSR?2 » Majority P
function
LFSR3 >

Figure (1) Threshold CSG [4].
Take the outpmgu. u(.)u.ub e u.[ .]_ SRs (use an odd number of them).

Make sure the lengths of all the LFSRs are relatively prime and all the feedback
polynomials are primitive: maximize the period. If more than half the output bits
are 1, then the output of the generator is 1. If more than half the output bits are
0, then the output of the generator is 0.

With three LFSRs, the output generator can be written as:
The Threshold SCG using the non-linear CF s.t:
F3(X1,X2,X3)=X1 XD X1X3® XpXs.
From the combing function of this generator, except that it has a larger linear
complexity [5]:
LC(S) = rqfp +11l3 + I3
where ry, r,, and r; are the lengths of the first, second, and third LFSRs.
6. Implementation of Autocorrelation Postulate on 3-TSCG
Notice that:

qm:(blm*me) (blm*b3m) (me*b3m)a m:Oa---aP(S)'l-

P(S)-1

Before involved in calculating )’ q,, we have to prove the following facts:

m=0
Fact (1): if ac{-1,1}, then a’=1.
Proof: is trivial.
Fact (2): The distributive law of the operation (*) on () is satisfied s.t.
a*(b-c)=(a*b)-(a*c), where a,b,ce{-1,1}.
Proof:
(a*b)(a*c)= [1-2(1-a)(1-b)] [1-72(1-8)(1-c)]=1-"2[(1-a)(1-b)+ (1-a)(1-C)]
+Y4(1-a)*(1-b)(1-c)=1-%[1-(a+b)+ab+1-(a+c)+ac]
Using fact (1), then:
(a*b)(a*c)=1-Y2[2-(2a+b+c)+ab+ac]+¥4[1-(a+b+c)+ab+ac+2bc-abc]
=1-%[1-(a+bc)+abc]=1-Y2(1-a)(1-bc)=a*(b-c) |
In the next facts and lemmas, let {a;}, {bi} and {c;} be maximal sequence
generated from MLFSR with length r (or ry,r, and r3).
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P(r)-1

Fact (3): Y a,*b=(2""-1)+b-2"*, where a;, be{-1,1}.
i=0

Proof:
P(S;)-1
Zai *ph=ao*b+a;*b+.. .+ap(5r)_1b.
i=0
1, if ai=1
Since ai*b=1—1/z(l—ai)(1—l{)=
b, if a=-1

and since N(1)=2"*-1 and N(-1)=2"", then:

P(r)-1

3 a, *b=1+1+...+1 + b+b+.. +b=(2"-1)+b-2"'=2"*(1+b)-1 u
i=0 — M

211 times 2" times

PE)-LPES,

)1
Fact (4): >’ a, *b; =2"""" — (2" +2%)+1, where a;,bje{-1,1}.

i=0 j=0

Proof:
P(S,)-1P(S,)-1 P(Sy)-1P(S,)-1

3> Ya*b =Y Y [H-il-a)l-b,)]

i=0  j=0 i= =0

P(Sy)-1 P(Sz)-1 P(S)-1
= [P(r,)-1@-a) > @A-b)]= D [P(r,)-3(-a).27]

i=0 =0 i=0

PS)-1

=P()P(r,)—277 Y (1—a,) =20 — (27 +27) +1-20"" T = 20 (20 4. 27) 41 u
i=0

P(r)-1

Fact (5): > (a *b)a,=(2""-1) - b.2"™.

i=0

Proof:
1, if a=1 1, if a=1
Since ai*b , then (a*b)a;=
b, if a=-1 -b, ifa=-1
P(r)-1
> (8, *b) &, = (2"'-1)-b2"*
i=0
(using Fact (1) and Fact(3)). u
P(S)-1
Now we are ready to calculate » q,, by using the next lemma.
m=0
Lemma (5):
P(S)-1
D Gy =—(27 T+ 20T 4 2T (28 4 2% 4+ 27) -1 ...(19)
m=0

Proof: e ot
r——F — Y
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P(S) -1 P(Sl) —LP(S)-1P(Sy)-1

Z (b, *b,,)(by * by )by * by )

m=o e Sy
@1 Sfeet 1)+ 2+, J+ 2fs-1p(szl)f[(2ff1 Dby, — 2]
=(2%" —1)(2:2_-(i D2t -1) - (25" -1)2" " - 2I_'30-1(2f2-1 —1)—25"2% (25 —1)
P%am = (20 4 2T 2Ry 4 (20 427 +27) -1 L
Enaijation (19) can be written as:
P(S)-1

qu _—Zsz +22' -1

Before we calculatmg ds(t) we need the following Lemmas.

Lemma (6):

P(S)-1P(Sy)-1

z Z(bll t)2j)(k:’1|-¢—-1:1 2j-¢—-1:2 )(bli b2j + b1i+‘tlb2j+l’2)
i=0 j=0

- 2 - 2&“1 - (dr1 (Tl) +1)(dr2 (TZ) +1) _%(2& +1+ dr1 (’tl)(2r2 +1+ drz (TZ)) "'(20)
Proof:

PS)-1P(S)-1

Z Z(bll * b2j)(b1|+-c1 2j-¢—-c2 )(bli b2j + bli+1:lsz+1:2 )

i=0 j=0
P(S)-1  P(Sp)-1 P(S)-1 P(Sp)-1 P(S)-1 P(Sp)-1
= Z bli sz + bl|+'c1 b2j+‘rz _%[ Z (1_bli)bli Z(l_bzi)bzi
i=0 =0 i=0 =0 i=0 =0
P(S)-1 P(S;)-1 P(S)-1 P(S;)-1
+ - bli)b1i+rl Z 1- b2|)b2|+12 + (1_bli+rl)b1i Z(l_ b2i+rz)b2i
i= =0 i=0 =0
P(S)-1 P(Sp)-1 (S)- P(Sp)-1
+ (1_ bll+rl li+ty z 1 b2|+12 2I+'cz % z 1 bli )(1_ bliﬂ:1 )bli Z(l_ b2i )(1_ b2i+tz )bZi
i=0 =0 i=0 =0

o

)-1 P(Sy)-1

+ (1 b1|)(1 bll+‘r1)bll+‘rl Z(l b2|)(1 b2|+rz)b2|+rz]

—1+1— [(F’(r)+1)(F’(f)+1)+(0I (1) +1)(d, (7))

+(d, (x)+D, () +1) +(P(r,) +D(P(r,) +1)]

+3[(P(r) +2+d, (z))(P(r,) +2+d, (7,))(P(r,) +2+d, (t,))(P(r,) +2+d, (t,))]
—2-2%% —(d, (r,) +D(d, (r,) +1) -1 (2% +1+d, (r,))(2% +1+d, (1,)) m

PE)-1P(S)-L

Lemma (7): Z Z(bli * b2j)(bli+r1 * b2j+r2 )(bli szbli+rlb2j+‘[2 )

:drl (171)dr27(12):(dr1 (171)‘|']-)(dr2 (Tz)‘*']-)_%(Zr1 +1+dr1 (r,))(2" +l+d (t,) .- (21)
Proof:

P(S))-1P(S,)-1
Z Z(bli *b2j)(b1i+r1 2]+12)(b1|b21b1|+11 2]+1:2)
i=0 j=0 E;N ui;)
A( ALCLA-L-‘Y! A -\é 1 "j \‘(A ‘\A
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PE)-LP(S,)-L

Z Z{l 3[Q-b,)A- sz)+(1_bli+‘tl)(1_b2j+‘r2 )]

i=0 j=0

+3[A—0y)A—Dby) A=y, JA=D0y, )IHby0, 0y, b))

P& P(S)-1 P&)-1 P(S)-1
Z:bllblw'r1 Zb2]b2]+r2 %[ Z(l_bli)bli bli+r1 Z(l_ sz)szb2j+‘fz
i=0 i=0 j=0
) P(S)-1
Z 1i+r1)blibli+r1 2(1_ b2j+r2)b2jb2j+rz]
i=0 j=0
P(S;)-1 P(Sp)-1

% ( bli )(1_ b1i+rl )bli bli+1:1 Z(l_ ij)(l_ sz+z2 )szszﬂ2

1(fl)d,2(fz) 1[(dr1(fl)+l)(dr2(Tz)+1)+(d,1(f1)+1)(d,2 (t,)+1)]

+3(P(r)+2+d, (7))(P(r) +2+d, (1))
=d, (t)d, (r,)-(d, (z)) +D(d, (r,) +D) -7 (2" +1+d, (x,))(2" +1+d, (1,)) |
Now we will shifting Q,, by t to find ds(t) by using the next theorem.
Theorem (2):
ds(t)=%[d, (v, )(P(r,)P(r;) = 2) +d,, (v, )(P(r,)P(r;) —2) +d, (z5)(P(r)P(r,) ~2)

+2(P(r,) + P(r,) + P(ry)) +d, (z,)d,, (z,)d,, (z5)] ...(22)

Proof:

P(S)-1 P(S$))-1P(Sp)-1P(S)-1

dS(T): ZQ Z 1i *b2j)(b1i *b3k)(b2j*b3k)

m=0 i=0 j=0 k=0

( li+1y b2j-¢—r2 )(bli+‘|:1 * b3k+r3 )(b2j+1:2 * b3k+r3)
P(S;)-1P(S,)-1 P(S3)-1
z bll *bZJ 1|+r1 2]+7: ) Z[l 3 (1 bllej)(l b3k)][1 1( l|+‘c1b2j+1:2)(1_ b3k+1'3 )]
i=0 j=0
P(S)-1P(S,)-

-1
=, (bn *D;) By, * Dy HP(1) =27 + 257 by,

+%(1 byb, )LDy, by (2% +1+d, (1))}
-1P(S,)-1
=2 (B3 %025 ) (e, * By, JO3Dy; + b Dy,)
i=0 =
" P(S)-1P(Sp)-1
+%(2r3 +1+dr3 (13)){ bll *bZJ)(bll+‘El 2]+1:2)

i=0 =0

—_

P(S)-1P(S,)-1

= 2 (b by (by., by Nbyby by, by )
j=0

i=0
P(S;)-1P(S,)-1

+ (by; *sz)(b1i+r1 *b2j+rz)(bliszbli+rlb2j+rz ) ..(23)
=0

By ;ubsiitute equations (20) and (21) in equation (23) and simplify them we get:
ds(t)=2"[2-2""" —(d, (v,) +1)(d,, (1) +D) + 3 (2" +1+d (z,))2" +1+d, (1,))]

She oA
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—[P(r)P(r,) - 2% +3(2" +1+d, (r,))(2" +1+d, (1,))]
After reformulate the above equation we get:
ds(t)=%0d, (x,)(P(r,)P(r;) = 2) +d,, (v, )(P(r,)P(r;) —2) +d, (t5)(P(r,)P(r,) ~2)
+2(P(r) + P(r,) + P(ry)) +d, (t)d, (t,)d, (t3)] -
equation (31) can be written in the form:
ds(t)=1[d, (1,)2%" —2% —2° ~1) +d, (1,)(2"" —2" —2"° -1)
+d, (t5)(2%"% —2" =27 —1)+2(2" + 2% +2" -1)
+d, (ty)d, (7,)d, (t5)] -1 ...(24)
According to the values ofd, (r,), 1<i<3, there are different values to ds().
Table (2) shows the different phases of equation (24) where t divides T (or
not), 1<m<3, 1<t<C! .
Table (2) Different phases of equation (24) for 3-TSCG.

1 1 2 3 3
T, =P(r1) (1)) =d, FA R A A L AR

i=1
1 1 2 3 3
T2=P(r,) = = F e A A Y A AR

i=1

1 1 2 3 3
T2 =P(r3) (1) = VY A S AR |

i=1

1 1 2 3 3
T2 =P(r1) P(r2) A VA A A L IYARS |

i=1

2= 1 1 2 3 3
TZ —P(rl) —_ 2R371_(2R271+2R2 +2R2—1)+22ri _1
P(I’g) =

3— 1 1 2 3 3
T2 —P(rz) 2R3—1_(2R2—1+2R2—1+2R2)+22n _1
P(rs) —

. 3 3
T,=P(S) 2% =)' 2% +3 2" -1=P(S)

i=1

ty T, (1 ' —ZS:ZRH+23:2“ -1
i=1

Example(2):

Let n=3, r;=2, r,=3, r;=5, then in table (2) the different values of ds(t) for 3-
TSCG are appeared.
Table (2) the different values of ds(t) of example (2) for 3-TSCG.
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States| 1 2 3 4 5 6 7 8
ds(t) JJ155 |123 |99 331 283 219 |651 |-61
Notice that the proportions of states 1,2 and 3 are approach to 0.25, the

proportions of states 4,5 and 6 are approach 0.5, while the proportion of state 8
is approach 0. Of course we focus in state 8 only.

Example (3):
Table (3) shows the proportions of each states of table (2) with many
examples of lengths of the combined LFSR’s.
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Table (3) the proportions of each states with many examples of combined
LFSR’s.

Percentage Percentage Percentage
of States 1,2,3 " | of States 4,5,6 " | of State 8

0.24,0.19,0.15 0.51,0.43,0.34 651
0.24,0.22,0.21 0.5,0.48,0.43 27559
0.25,0.24,0.25 | 0. 0.5,0.5,0.48 . : 8059039
0.25,0.24,0.24 0.5,0.5,0.48 32426527
0.25,0.25,0.25 0.5,0.5,0.5 132844159

Where Exp. is the Expected value.

7. Applying of Chi-Square Tests on 3-TSCG

In this section we will apply chi-square test on the results gotten from
calculations of autocorrelation postulate on 3-TSCG.

Let M be the number of categories in the sequence S, c; be the category i,
N(c;) be the observed frequency of the category c;, Pr; the probability of occurs
of the category c;, then the expected frequency E; of the category c; is

Ei=P(S)-Pr;, the T (chi-square value) can be calculated as follows [6]:

T:g (N(ci)E— E)’ ...(25)

Assuming that T distributed according to chi-square distribution by v=M-1
freedom degree by o as significance level (as usual a=0.05%), which it has T,
as a pass mark. If T<T, then the hypothesis accepted and the sequence pass the
test, else we reject the hypothesis and the sequence fails to pass the test, this
mean that T not distributed according to chi-square distribution.

In order to test our results we have to suggest an example suitable to our study
case. Let n=3, r=7, r,=9 and r;=11. P(S)= 132844159 (taken from last
experiment of table (3)).

In Auto correlation test, take v= 1, with a=0.05%, then T,=3.84 (see chi-
square table). Since ds(t) represent between the Ng(-1) and Ng(1) for the
sequence S when its shifted by t, then its can be used to estimate the statistic
value T of chi square test by using the proportion of state 8 mentioned in table
(3). We can reformulate equation (25) to be suitable to autocorrelation test, so it
can write as follows:

T()=30 ..(26)
P(S)
For the 3-TSCG, from equation (24) and because of equation (12) then (26) will be:

T=(0.0026)°/132844159 ...(27)
When substitute the information of the chasen example in equation (27), then:
@& [2
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T=5.088669x10""<< 3.84, then 3-TSCG passes this test.

8.
1.

3.

4.

Conclusions

In this work we successes to calculate the autocorrelation property
deterministically, for nonlinear generator (Threshold generator), while it was
calculated before this work probabilistically.

. As known before the chosen samples are really random although we see that

they fail to pass the autocorrelation postulate for complete period cycle of the
output sequence, but if we choose local sequence with chosen period, then the
results of autocorrelation postulate will passes this test.

These theoretical studies can be applied on other kinds of stream cipher
generators to calculate the autocorrelation to them.

As future work we may apply other properties of randomness criteria like,
frequency and run on linear or non-linear stream cipher generators.
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