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Abstract

In this paper, the generalized Chebyshev polynomials defined on the interval
[a,b] are presented. Some properties of such polynomials that are useful for
numerical applications are discussed and derived. Then a direct method for
solving variational problems is proposed which is based on the generalized
Chebyshev polynomials to reduce a variational problem to a nonlinear
mathematical programming problem.

The solution is obtained in terms of generalized Chebyshev polynomials
method, illustrative examples is given.

Keywords: Generalized Chebyshev Polynomials, Variational Problem,
Nonlinear Programming.
1. Introduction

Chebyshev polynomials have a wide variety of practical uses in numerical
algorithms and are easy to compute and apply. Most areas of numerical analysis
as well as many other of mathematics as a whole make use of the Chebyshev
polynomials. In several areas of mathematics, polynomials approximation,
numerical integration and pseudospectral methods for ordinary and partial
differential equations, the Chebyshev polynomials take a significant role. Many
authers and researchers studied the Chebyshev polynomials such as in [1,2] a
method based on Chebyshev polynomials was proposed to solve constrained
linear quadratic optimal control with the aid of spectral method, while higher
order linear differential equations was solved by [3] using rational Chebyshev
collocation method and others see [8]

In this paper, a generalized Chebyshev method defined on the interval [a,b] is
presented to solve calculus of variation problems. Some properties of
generalized Chebyshev polynomials are derived which are very important in the
proposed method.

2. General Chebyshev Polynomials With Some New Properties

To use the Chebyshev polynomial TG with a variable t in the finite
rangl@-b], we make the mapping into the range [-1,1] of X by the linear

2t — (b + a)
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t is unbounded from below (a= —=) or from above (b — =) [6].

Then the general Chebyshev polynomials T ® of order n can be defined using
the following formula:

B pyn (218)""
zl (-1 -1 — 1)
Gy 1t 1,
o= ETZE rin —zry
Tg _ 2t — {ﬂ + b}

where * b-a
The first few of general Chebyshev polynomials are
T8 =1
Tg _ 2f — {ﬂ + b}

' b_a
T9 = 2Tz - To.

TY =4T3-3T,
TS =8Tt-8T7+ T,
T9 =16T5- 20T + 5T,
Also the general Chebyshev polynomials can be obtained using the recurrence
relation give throughout the following lemma.

Lemma (1):

The general Chebyshev polynomials can be obtained from the recurrence
relation

T9y=2T9TI -T2 _, @ih) n=23,. ..(1)
I _Zf— a+
where T3 =1, K==

Proof:
Using mathematical induction to show (1) is true for n=2
T =2T7TJ-TJ.

1y _
=2 :(;)(-Tag + ) -TY =T
Leteq. (1) true when n=k , i.e.
Tg=1(2THT ) Tis )
To show it is true for n=k+1
- {1 - O
T2 {3) (0
Hence, T§+1 , and since n=k+1
therefore, Tn =2T7T7 . —TZ . which is the required result.
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The derivative of ing of order n can be obtained using the following

formula
L —2r—1

v FEI(-1) (n—r-1)(21y
b - az rl(n—2r—1)!

The first few of derivative general Chebyshev polynomials are

TS(T,)=

-g_ 2

h b-a ,

T3 2.2.2 79

a _a 1: ’

T9=3 2
b)) -

T9 = 14 22,8,
(b—a)(-ﬂr(tﬂ

(16[ 9) —12 E(T;f‘]z + 1)

Now can be obtained in term of T using the product relation
TET‘I‘% = i[ n+m ¥ Tf?n m1]

Therefore,
(T79) = !
(T39) = —— 1
{ ) 1) 2 Té? + 3Tlg ]
- T_g I _ _ 1
( ) 1] 23 Tf + {-TE.L"? + ET{LJ? ]
e 1
(1) =3 g g

2¢ _TE + 5T3 + 1DT1

— g5 1
22[T¢_+6T9_+15T9_ +20T4_]
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9 Tg
| 14 F
[(TZ1) 79
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or [TF] =
..(3)

-

w2y (o) (wre)e oy -y

where

R=07. 1. T7. TJ. - Tg='=)T

where K = (k;) s an (m-1)x(m+1) matrix and its elements can be obtained with
the use of the following:

Using eq.(3), the relationship between T7 and T#  can be rewritten in the
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IoIIowmg form:

T.f=n’
2

g _

L " b-a |,

o= 2227,
T§=3(b5a)(2g+rﬂ)

. 2 _
g =
TS = _4.2.(_b a) (TL3+T1)

. 2 . \
T9 =5 (H) (2T, + 2T, + T,

or in matrix form as 75 = DT3 where
. . . T B
T9=(TST9.. T8}, T¢=(T T, T, Ty Tn)

and D is the operational matrix of differentiation of general Chebyshev
polynomials which is given by:

2n
De = b-a
If n even, and

D, = %{E EMBED Equation.DsMT4 BEH)

If n odd

(8 EMBED Equation.DsMT4 B88)

3. Application of General Chebyshev Polynomials for Solving
Variational Problem

The calculus of variations is concerned with finding the maxima and minima
of certain functional. Functional minimization problems known as variational
problems appears in engineering and science.

Several methods have been used to solve variational problems. For example,
the homotopy-perturbation method [4], Bernstein Direct method [5] while
Walsh-Hybrid method [7] was applied to solve variational problems.

Consider the problem of finding the minimum of the time-varing functional

-1
Joo =1 & 4 tx + xDdt
-0

where J is the functional whose extremum must be found. In order to find the
extreme value of J, the boundary points of the admissible curves are given by
1
x(0)=0,x)=-
4 Q'N ui‘@
P a4 :@ < 4 Taa
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60 =__i' [(x2] + tx + x2)d=

.. (4)
1
. .. _ x()=-
with boundary conditions X} = o " .. (5
O =—scetsc.et 6= 2-e_
the exact solution is IERR where = 4(e*-1) and
_ e—ze?
C4(ez-1)
Approximate the variable X} 2using general Chebyshev polynomial
.. (6)

or
T

wherea=1la, a, a, a,1 angT9=[T7 T7 T7 T7]

ity=aTD,T9 ..(7)

Here Do = 2.3(a EMBED Equatio=.psMT4 888)

Substitute egs. (6) and (7) into (1) to get

Joo= | (a"D,T? D,T9"a+ a"t D,T9 +a” T4 T a)dt
— ["(@"(D,T D,TS" + T9 T )a +a” ¢t T9 )dt .

— > {tp T9 p TIT . TITIT
Lo =2[[D,T9 D797 4 TOTS ae

=1 .
cT = | tTAdt
=0

£
Il
SToTh

Therefore; H =[a EMBED EquatioC.psMT4 B8]

1
. =-a"Ha+cTa
Eq.(8) can be rewritten asJF 2

Eq.(5) and Eq.(6) gives:
x=a"T9 =0
;‘( A {a o
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g
x(1) = al T9¢D) =
where T9@ =01 -1 1 -1]
and T9m=0n1 1 1 1]
Then t he quadratic programming problem

Joo _laTHa+c"a
2 subjectto

where

The optimal values of unknown parameters @i =0,1,2,3  gre:
103 681 -15 7

@0 =702, “* 5504, -

% =704, “* T 5504,
The approximate solution is:
103 681 o, 15 4 7 79

t)=—T9 _—T
Y =70s" t5504* 704 T5504°

Table (1) shows the approximatw solution obtained by using generalized
Chebyshev polynomials with M=3 and 4 and the exact solution, This table
shows that by increasing m the accuracy of solution will increase.

Table (1) comparison between exact and approximate solution.

0 5.63785-018

0.04195073

0.04180603

0.04195416

0.07931716

0.07922622

0.07932535

0.11247325

0.11250476

0.11247145

0.14175084

0.14188584

0.14172635

0.16774429

0.16761363

0.16773902

0.18980672

0.18993235

0.18982955

0.20906597

0.20908615

0.209067705

0.22541345

0.22531924

0.225413318

0.23901278

0.23887579

0.23905895

4. Conclusion
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The generalized Chebyshev method have been successfully applied to the
problem of variational problem. The method is based upon reducing the
variational problem by a quadratic programming one. The generalized
Chebyshev method will be used to solve more complex variational problem.
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