Abstract

We shall study the new relation between two the quasi-prime module and pseudo-prime module. The purpose of this paper is to study and gave the new relation between the two different prime module.

Introduction:

We shall study the new relation between two different prime modules. A module is called Quasi-prime module if \(\text{ann}_R N \) is a prime idal for every \(N \) be a submodule of a module \(M \). And \(M \) is called pseudo-prime Module if \(\text{ann}_R N \) is primary ideal for every \(N \) be submodule of \(M \) \([3],[4]\),where where \(\text{ann}_R N=\{r \in R;rx=0 \text{ for each } x \in N \} \).

The primary goal of this paper to give some condition to show That there is some relation between the Quasi-prime modules and pseudo Prime modules. In the start we show that every Quasi-prime modules is Pseudo-prime modules but the converse is not true in general unless \(M \) be cyclic. And we showing that if \(N \) is pseudo-prime submodule of \(M \) then the \(R \)-homomorphism \(\varphi^{-1}(N) \) is also pseudo-prime Submodule of \(M \). And we prove if \(N \) is a pseudo-prime submodule of \(M \) and \(\varphi \) is an epimorphism such that \(\ker \varphi \subseteq N \) then \(\varphi(N) \) is a pseudo prime submodule of \(M \).

Theorem (1):

Every Quasi-prime module is pseudo-prime module

Proof:

Let \(M \) be Quasi-prime module so \(\text{ann}_R N \) is a prime ideal For every \(N \) be a submodule of a module \(M \). But every prime Ideal is primary ideal so \(\text{ann}_R N \) is a primary ideal for every \(N \) be submodule of a module \(M \). Which mean that \(M \) is a pseudo Prime module (by definition)

But the converse of the above theorem is not true. We can show that by the following example:

Let \(M=\mathbb{Z}_8 \), \(N=\{[0],[4]\} \) is pseudo prime

Since \(\text{ann}_R N=\{4\mathbb{Z}\} \) is primary ideal since \(4 \notin \{4\mathbb{Z}\} \)

i.e \(2.2 \in \{4\mathbb{Z}\} \) but \(2 \notin \{4\mathbb{Z}\} \) where \(4 \notin \{4\mathbb{Z}\} \), but \(M \) is not Quasi-prime module since \(\text{ann}_R N=\{4\mathbb{Z}\} \) isnot prime ideal

Theorem (2):

If \(M \) be cyclic module and pseudo prime then \(M \) is Quasi-prime module.
Proof:
If \(ab \in \text{ann}_R N \) to prove \(ac \in \text{ann}_R N \) or \(bc \in \text{ann}_R N \).
Since \(M \) be cyclic so every submodule is cyclic \([1]\).
Let \(N \) be submodule of a module \(M \) and \(N = \langle x \rangle; x \in M \).
Since \(ab \in \text{ann}_R N \) so \(abN = 0 \).
\(\therefore \ abx = 0 \) if \(ax \neq 0 \) then \((bx)^n = 0 \) (since \(\text{ann}_R N \) is Primary ideal)
So \(bx = 0 \) so \(bc \in \text{ann}_R N \).
\(\therefore \ \text{ann}_R N \) is prime ideal for each \(N \) submodule of \(M \).

Remark (1):
The \(\mathbb{Z} \)-module \(\mathbb{Z}_n \) is pseudo prime iff \(n \) is prime ideal.

Proof: Trivial.
Every non-zero submodule of pseudo prime module is pseudo prime module.

Proof:
Let \(M \) be pseudo prime module and let \(N \) be Submodule of \(M \).To prove \(N \) be pseudo prime module.
Let \(U \leq N \leq M \). Since \(M \) be pseudo prime module so \(\text{Ann}_R N \) is primary ideal. So \(N \) is pseudo prime module.

Remark (3):
It is clear that if \(M \) is pseudo prime module then \(\text{ann}_R M \) is primary ideal.

Definition (1):
Let \(N \) be a submodule of a module \(M \) then \(N \) is called pseudo prime submodule of \(M \) if \(xym \in N \) for \(x, y \in R \) and \(m \in M \) then either \(x^n m \in N \) or \(Y^n m \in N \) for some \(n \in \mathbb{Z}_+ \).[3]

Definition (2):
A proper submodule \(N \) of a module \(M \) is said to be quasi-prime submodule if whenever \(r_1, r_2 \in R, m \in M \) then either \(r_1 m \in N \) or \(r_2 m \in N \) \([2]\).

Remark (4):
Every quasi-prime submodule is pseudo prime Submodule.

Proof:
Trivial, but the converse is not true for example \((6\mathbb{Z}) \) is pseudo prime submodule of \(\mathbb{Z} \) since \(2 \cdot 3 \cdot 2 \in (6\mathbb{Z}) \)
But \(2^n \cdot 2 \in 6\mathbb{Z} \) whenever \(3^n \cdot 2 \in (6\mathbb{Z}) \). But \((6\mathbb{Z}) \) is not quasi-prime submodule \([2]\).

Definition (3):
A proper submodule \(N \) of an \(R \)-module \(M \) is semi-prime if \(r^k x \in N \) for \(r \in R, x \in M \) and \(K \) be Positive integer, then \(r x \in N \).

Remark (4):
Every quasi-prime submodule is semi-prime submodule. [2]

Remark (5):
Every semi-prime submodule is pseudo prime submodule.

Proof:
If \(r^k x \in N \) then \(rx \in N \) for \(k \in \mathbb{Z}, x \in M, r \in R \) (by def. of semi-prime submodule) so \(r^{k-1} rx \in N \) so either \(r^{k-1} x \in N \) or \(rx \in N \) so \(N \) is pseudo prime submodule.

Theorem (3):
Let \(M \) and \(M_1 \) be two \(R \)-modules and Let \(\phi : M \rightarrow M_1 \) be an \(R \)-homomorphism then
1- if \(N \) is pseudo prime submodule of \(M_1 \) then \(\phi^{-1}(N) \) is also pseudo prime submodule of \(M \).
2- if \(N \) is a pseudo prime submodule of \(M \) and \(\phi \) is an epimorphism such that \(\text{ker} \phi \leq N \) then \(\phi(N) \) is a pseudo prime submodule of \(M_1 \).

Proof (1):
Let \(r_1, r_2 \in R \) and \(m \in M_1 \). If \(r_1 \cdot r_2 \cdot m \in \phi^{-1}(N) \)
So either \(r_1 \cdot \phi(m) \in N \), which is pseudo prime submodule.
So either \(r_1^n \cdot \phi(m) \in N \) or \(r_2^n \cdot \phi(m) \in N \). So \(r_1^n \cdot m \in \phi^{-1}(N) \) or \(r_2^n \cdot m \in \phi^{-1}(N) \) therefore \(\phi^{-1}(N) \) is pseudo prime submodule of \(M \).

Proof (2):
Let \(r_1, r_2 \in R \) and \(m_1 \in M \) such that \(r_1 \cdot r_2 \cdot m_1 \in \phi(N) \)
Hence, there exist \(n \in N \) such that \(r_1 \cdot r_2 \cdot m_1 \phi(n) \).
But \(m_1 = \phi(m) \) some \(m \in M \) so \(r_1 \cdot r_2 \cdot \phi(m) = \phi(n) \). So \(r_1 \cdot r_2 \cdot (m-n) \in \ker \phi \leq N \) so \(r_1 \cdot r_2 \cdot (m-n) = n_1 \) for some \(n_1 \in N \) so \(r_1 \cdot r_2 \cdot m_1 \phi(N) \) is pseudo prime submodule of \(M \) so that there exist \(r_1^{-1} \cdot m \phi(N) \)
Or \(r_2^{-1} \cdot m \phi(N) \), which means that \(\phi(N) \) is a pseudo prime submodule of \(M_1 \).

References:
ON Quasi and pseudo prime module Montaha Abdul-Razak Hasan

4-RL.Mccasland and M.E.Moore,Prime submodule communication In algebra, 20(6), 1992,1803-1807.