On Some Open Mapping

Montaha Abdul – AL Razak

<u>Abstract</u>

In this work we give new theorems to definition of [5], and we prove Some properties of these mappings.

1. Introduction:

The concept of open mapping is very important generalization of open mapping.[3] In this work ,we study in details inductively semi open mapping , which are generalization of inductively open mapping By a space X, we mean a topologicaly fal space X By a mapping , we mean Continuous function , the symbol f: X Y means that f is onto.

2. Basic definitions and remarks

In this Section , we recall the basic definitions needed in this work

2.1. Definition . [2]

Let $f: X \rightarrow Y$ be a function, we Say that f is open if and only if the image of every open set in X is open in Y.

2.2 Remarks and examples

1. f: $\mathbb{R} \longrightarrow \mathbb{R}$ where $f(x) = x^2$ is not open, because if w = (-1,1) then f(w) = [0,1) is not open in \mathbb{R} .

2. if $f: X \longrightarrow Y$ is an open function and also continuous then we say that f is an open mapping (abbreviated O . M) for example, f: [2,5] = R, where $f(X) = X^2$. is O.M

Next, we recall the definition of inductively open mapping

2 . 3 Definition . [3]

Let $f : X \longrightarrow Y$ be a mapping from X into Y, we say that f is inductively open mapping (abbreviated I. O.M.) if and only if there exists a subset X_1 , of X such that

 $f(X_1) = f(X)$ and $f \setminus_{X_1} : X_1 \longrightarrow f(X_1)$ is open mapping.

2.4 Remarks and examples

1. f: $\mathbb{R} \to \mathbb{R}$, where $f(x) = x^2$ is I.O.M because, let $X_1 = [0,\infty)$ then $f(x_1) : X_1 = \mathbb{R}$ is open.

2. Every open mapping is an inductively open mapping.

Before we introduce the concept of inductively semi-open mapping, we recall the following definition.

2.5 Definition .[1]

Let $A \subseteq X$, we say that A is semi – open in X if and only if there exist an open set G in X such that $G^{\circ} \subseteq A$ $\subseteq G$.

For example, [0,1) is semi open in (\mathbf{R}, T_U)

2.6 Definition [1]

Let $f: X \rightarrow Y$ be a mapping, we say that f is a semi-open mapping (abbreviated S.O.M) if the image of every open set in X is semi-open in Y.

2.7 Definition [5]

Let $f: X \to Y$ be a mapping ,we say that f is inductively semi open mapping (abbreviated I.S.O.M) if and only if there exist $X_1 \subseteq X$ Such that $f \setminus_{X_1} : X_1$ f (X_1) is a semi open mapping and f $(X_1)=f(X)$.

2.8 .Remarks and examples

1- Every inductively open mapping is an inductively semi open mapping

2- Every semi open mapping is an inductivity semi open mapping.

3- X_1 in the above definition is Called an inductive set .

3. Inductive Semi-Open Mapping

In this Section ,we shall prove several theorems Concerning inductively semi open mapping :

3.1 Theorem :

Let f: X \rightarrow Y be an I.S.O.M and let A \subseteq X be an inverse set(that is A= f⁻¹ (f (A)) such that f(A) is an open in f (X)) then f \setminus_A : A \rightarrow Y is also an I.S.O.M

<u>**Proof**</u>: since $f: X \to Y$ is an I.S.O.M, then $\exists X_1 \subseteq X$,

 $f(X_1) = f(X)$ and $f \setminus_{X_1} : X_1 \rightarrow f(X_1)$ is a S.O.M,

let $A_1 = A \cap X_1$, then we have,

$$f(A_1) = f(A \cap X_1)$$

$$= f(f^{1}(f(A))) \cap X_{1})$$

 $= f(A) \cap f(X_1)$

$$= f(A) \cap f(X)$$

$$= f(A)$$

Now , let W be open in A , then $\exists W^*$ open in X_1

$$W = W * \cap A_1$$

Then we have,

$$f(W) = f(W^* \cap A_1)$$

= f(W^* \cap (A \cap X_1))

$$= f (W^* \cap A)$$

= f (W^* \cap f^1 (f(A)))
= f (W^*) \cap f (A)

Now, $f(W^*)$ is semi open in f(X), but f(A) is open in f(X) then $f(W^*) \cap f(A)$ is semi open in f(A), So $f \setminus_{A_1} : A_1 \rightarrow f(A)$ is a S.O.M therefore $f \setminus_A$ is an I.S.O.M

3.2 Theorem:

Let $f: X \to Y$ be an I.S.O.M and let $T \subseteq Y$, define $f_T: f^1$ (T) $\to T$ as follows: $f_T(x) = f(x)$ for every $x \in f^1(T)$ then f_T is also an I.S.O.M if f is onto.

<u>**Proof**</u>: since $f : X \to Y$ is an I.S.O.M, then $\exists X_1 \subseteq X$ $f(X_1) = f(X) = Y$ and $f \setminus_{X_1} : X1 \rightarrow Y$ is a S.O.M, let $T^* = X_1 \cap f^1(T)$, then we have, $f(T^*) = f(X_1 \cap f^1(T))$ $= f(X_1) \cap T$ $=f(X) \cap T$ $=Y \cap T$ = TNow , let w^* be an open in T^* , then $\exists w$ Open in X_1 , $W^* = w \cap T^*$, then $f(W^*) = f(w \cap T^*)$ $=f(W \cap X_1 \cap f^1(T))$ $=\mathbf{f}(\mathbf{w} \cap \mathbf{f}^{-1}(\mathbf{T}))$ $= f(W) \cap T$ Now, f(W) semi open in Y and T open in Y, then $f(W) \cap T$ is semi open in T, So $f \setminus_{T^*} T^* \to T$ is a S.O.M therefore $f_T: f^{-1}(T) \to T$ is an I.S.O.M

3.3 .Theorem:Let $f: X \rightarrow Y$ is I.S.O.M and $g: Y \rightarrow Z$ is I.S.O.M then $g^{\circ}f: X \rightarrow Z$ is I.S.O.M**Proof**: since $f: X \rightarrow Y$ is I.S.O.M, then $\exists X_1 \subseteq X$, $f(X_1) = f(X)$ and $f \setminus_{X_1}: X_1 \rightarrow f(X_1)$ is S.O.M and since $g: Y \rightarrow Z$ is S.O.M**2009** / كمبلة كلية التربية الأساسية

Then $\exists Y_1 \subseteq Y$, $g(Y_1) = g(Y)$ and $g \setminus_{Y_1} : Y_1 \rightarrow g(Y_1)$ is S.O.M T.P $g^{o}f: X \rightarrow Z$ is I.S.O.M Let $X_1 \subseteq X$; $g \circ f(X_1) = g \circ f(X)$ and let $w = w^* \cap X_1$ $g^{o}f(X_{1}) = g(f(X_{1}))$ =g(f(X)) $= g^{o}f(X)$ Let w open in X and w^{*} open in X_1 T.p gof(w) is S.O.M $gof(w) = gof(w^* \cap X_1)$ $=g(f(w^* \cap X_1))$ $= g(f(w^*) \cap f(X_1))$ but $f(w^*)$ and $f(X_1)$ are two S.O.M so $g^{\circ}f(w) \cap g^{\circ}f(X_1)$ are two S.O.M so $g^{o}f(w)$ is S.O.M so $g^{o}f \setminus_{X_1}$ is I.S.O.M

3.4 Remark :

The identity mapping is not I.S.O.M

3.5 Theorem :

Let $f: X \rightarrow Z$ is I.S.O.M then g: $X \rightarrow X/Z$ is I.S.O.M

Proof: since $f: X \rightarrow Z$ is I.S.O.M so $\exists X_1 \subseteq X$; $f(X_1) =$ f(X)and $f \setminus_{X_1} : X_1 \to f(X_1)$ is S.O.M Let w be open in X_1 ; w = X \cap X₁ $g(w) = g(X \cap X_1)$ $= g(X) \cap g(X_1)$ $=(X+Z)\cap(X_1+Z)$ $=(X \cap X_1) + Z$ $=X_1 + Z$ $=g(X_1)$ العدد السادس والخمسون / 2009

Let w* be in w, then $\exists k \text{ open in } X_1 ; w^* = k \cap w$ $g(w^*) = g(k \cap w)$ $=g(k) \cap g(w)$ $g(w^*) = g(k) \cap g(X \cap X_1)$ $=g(k) \cap g(X_1)$ $=g(x_1) \text{ is } S.O.M$

References

- 1-R.I . Abdullah: semi closed mapping , M . sc thesis , AL. Mustansiriyah university ,(2000)
- 2 S.t.Hu: Elements of general topology , Holden day (1966)
- 3 A Nadhim : inductively open mapping ,M.SC thesis, Babylon university ,(2001)
- 4 S. will and : Topology ,Academic press, (1970)
- 5 Jaber, H. : On Inductively Semi-Open Mapping.