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Introduction  

In this püper we investigate some embedding problems on 

semigroups. In Section 2 we give necessary and sufficicient 

conditions for semigroups to be embeddable in right groups. We 

give a criterion for semigroups with zero element to be 

embeddable in semigroups having a zero element 0 and being 

unions of disjoint subgroup Gα, αeY, such that Gα Gβ=0if α≠β. in 

Section 3 we investigate the enihedd.iag of commutative 

semigroups into groups, in particular, into torsion-free groups. 

For this purpose we define (m,n)-separativity of semigroups. In 

Section- 4 (m,n)-separative semigroups will be studied.  

For all notationa and notione which are not defined in this 

paper, we refer to [1]. 

 

2. Embedding into completely regular semigroups 

DBFIN IT ION 1. A semigroups is said to be a right group if 

it contained no proper left ideals and is right calculative. (see [3]. 

P.310). 
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For the next two theorems the following lemmas are needed 

([2], p.39). 

 

LEMMA 1. A right group is the union of a set of isomorphic 

disjoint groups. If e and f are distinct idem potents a right group 

S, then the mapping x→xf (xSe) is an isomorphism of the group 

Se upon the group Sf (see [4]. P.258). 

LEMMA 2. A semigroups is a right group if and only if it is a 

union of disjoint subgroups such that the set of identity elements 

of the subgroups is a right zero subsemigroup. (See (4).p. 259) 

THEREM 1. A semigroup can be embedded, in a right group if 

and only if it is the union of disjoint subsemigroups Sα, αY, 

such that each subsemigroup Sα can be embedded in a group Gα, 

Gα  Gβ, = if α≠β and for every α and β Y there exists an 

isomorphism of Gα  onto Gβ such that 

(i) a φαβ φβγ = a φαγ for all a Gα, α1β1γY;  

(ii) a φαβ b= ab   for every a Sα, b Sβ, α1βY; 

(iii) φαα is  the  identity mapping  of  Gα, αY 

Proof. First we show that the conditions arc sufficient. Assume 

that the semigroup S satieties the conditions of the theorem and 

let G = {Gα:αY} For any elements a,b of G there exist α1βY 

such that a Gα and b Cβ Let a
o
b = a φαβ. Thus we have defined, 

an operation "o" on G. We prove that G(o) is a right group. The 

operation is single-valued because Gα  Gβ, =  if α≠β. In order 

to show the associatively, let a,b,c are any elements of G. Then 
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there exist α,β,γY such that a  Gα, bGβ, and CGγ. Thus 

ao(b
o
c)a

o
(bφβγc)=aφαγ(bφαγc)(aφαγbφβγ)c=(aφαβφβγbφβγ)c= (aφαγb) 

φβγc=(a
o
b)

o
c. 

If a,bGα then aob = aφααb=ab, that is, G(o) is a semigroup which 

ia the union of the disjoint subgroups GααY. If e(Gα) and f 

(Gβ) are idempotent elements, then eof=eφαβ cof =ff = f. 

Consequently, the set of -the identity element a of the groups 

Gα,αY, is a right zero subsemigroup. Thus G a right group by 

Lemma 2. 

We show that S can be embedded in G. Since SG, we have 

only to prove that aob= ab for every a,b  S. Let a,b any couple of 

elements of S. Then there exist α,βY so that aSα (Gα) and 

bSβ(Gβ). Thus aob=aφαβb=ab by Condition (ii). Consequently 

S is a subsemigroup of G and the first part of the theorem is 

proved. 

Conversely, assume that the semigroup S is embeddable in a right 

group G. By Lemma 1, G is the union of a act of isomorphic 

subgroups Gα, αY. Thus S is the union of some subsemigroups 

Sα, αY, where every  Sα can be embedded in Gα. The mapping 

φαβ:x→xf (xGα) is an isomorphism of the group Gα, upon. Gβ 

where f is the identity of Gβ (see Lemma 1). Let e,f,h be the 

identity elements of Gα,Gβ and. Gγ, respectively,  and. Let a Gα, 

bGβ, xSα, ySβ α,β,γY; Then 

 aφαβφβγ = (af)h = a(fh) = ah = aφαγ 



On (, n)- Separative Embedding Theorems on Semigroups...................... 

Hatem M. Amin  

9002 
 

111 

xφαβy = (xf)y = x(fy) = xy,= aφαα = ae =a. 

Thus the theorem is completely proved. 

THEOREM 2. A semigroup having a zero element 0 can be 

embedded in a semigroup which has a zero element 0' and IB the 

union of disjoint subgroups Gα, αY so that Gα,Gβ =0' for every  

α≠β, α,βY  if and only if It is the union of disjoint 

subsemigroups embedded in groups Sα, αY such that Sα,Sβ=0 for 

every α≠β α,β Y 

Proof. Since the necessity of the coalition is trivial, we have only 

to show the sufficiency. Assume that the semigroup S with zero 0 

is the union of disjoint subsemigroups Sα α Y such that every Sα, 

is embeddable in a group Gα and Sα,Sβ=0 α≠β α,β Y We may 

assume that Gα, ie generated by Sα, and so Gα  Gβ, =  if α≠β. 

let G = {Gα:αY}. We define an operation "o" on G as follows: 

For any elements a  Gα, bGβ, let aob = ab if α=β 

and aob = 0 if  α≠β. It is evident,  that  G is a semigroup with aero 

element aod G ±B the union of the subgroups Gα,αY. Since 

SαGα and aob = ab for every a,b in S, the semigroup S is 

embeddable in G (S is a subsemigroup of G) 

 

3. Embedding in groups 

A commutative semigroup can be embedded in a group if and 

only if it is calculative. For non-connotative semigroups 

cancellation is an evidently necessary condition for embed ability 
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in a group, but it is far from sufficient. The first necessary and 

efficient condition is due to S,Lajas (see [3],p.311)  

In this auction. we investigate the embedding in groups for 

several c lasses of commutative semigroups and deal with the 

embedding of commutative semigroups into torsion-free groups. 

DEPIMITION 2. lie-I, S be an arbitrary semigroup. An 

clement a of Swill be called a asymmetry element  if xay= yax for 

every couple  x,yS (See [8]) 

LEMMA 3. The eel of all symmetry elements of a semigroup 

S is either empty or an ideal of S.  

Proof. Let a "be a symmetry element and x,y be any elements 

of a semigroup S. Then, for every sS, 

x(a8)y = xa(sy) = (sy)ax =s(yax)= s(xay) = 

=(sx)ay= ya(sx) - y(as)x 

and x(sa)y = (xa)ay = ya(xa) = (yax)s= (xay)= 

=xa(ye) = (ya)ax y(sa)x. 

Consequently, both as and ea belong to the set of all symmetry 

element a of S. Thus the theorem is proved. 

THEOREM 3. A left calculative semigroup which has a 

symmetry element is commutative. 

COROLLARY. A calculative semigroup which has a 

symmetry element can be embedded in a group. 

Proof, Assume that -the left calculative semigroup S has a 

symmetry element a and. let x,y be arbitrary elements of S. By 

Lemma 3, as is a symmetry element of S for any a  S, and (sa)(xy) 
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=(eax)y = x(as)y = y(as)x = (yas)x =(sa)(yx). Thus xy= yx 

because S is left calculative. 

DEPIUITIOH 3. A semigroup S is said to be separative if  a
2
= 

ab=b
2
  implies  a = b  for every couple a,bS. (See [6]) 

THEOREM 4. A commutative separative semigroup S can 

be embedded in a group if and only if some power  S
n
 (n>1) is 

embeddable in a group, 

Proof. If a semigroups is embeddable in a group, then every 

power of it is so. 

Conversely, let S be a commutative separative semigroup. 

Assume that there exists a positive integer n so that S
n
 is 

embeddable in a group. Since there is  a positive integer k such 

2
k
≥n, S

n
S

2k
 and so S

2k
is embeddable in a group. Consequently, 

it sufficed to show that S is embeddable in a group if S
2
 is 

because by applying this particular proposition general times, we 

get in succession that  S
2k-1

, S
2k-2

,...,S
2
  and finally, S can be 

embedded in a group, let S be embeddable in a group. Then S
2
  is 

calculative. We prove that S is calculative too Let a,x,y S such 

that ax = ay. Then ax = a
2
x

2
=a

2
yx and a

2
xy=a

2
y

2
. The elements 

a
2
,x

2
, xy belong to S , hence x

3
= y

2
= xy because S

2
 is calculative 

and S is commutative, Since S is separative, we get x=y This 

means that S is left calculative. Similarly, S is right calculative, 

Thus S can be embedded in a group, and, the theorem is proved. 

Before dealing with the embedding of commutative 

semigroups in torsion-free groups, we prove the 
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THEOREM 5" A esmigroup which is not a group can not 

be embedded in a torsion group. 

Proof. Let G be a torsion group. Then, for any element a of G 

there exists a positive integer n so that a
n
 = 1 (the identity of G). 

We prove that every subsemigroup of G is left simple and. right 

simple. First, we show that, if K is a subsemigroup of G, then. the 

left idealizer of K, IdL= {xS: xKK) and the right idealizer of K 

equal to K. Since G is a torsion group, the identity 1 of belongs to 

K. Thus, for any x  G, x = x1  xK and x = lx  Kx. Hence 

xKK [KxK] and xK. Therefore IdLK= K=IdRK. Let S be a 

subsemigroup of G. Then  a subsemigroup K of S is a left [right] 

ideal of S if and only if IdLKS [IdRKS]. Thus if K is a 

subsemigroup of S so that K is a left [right] ideal of S, then K = S 

because S IdLK = K [S IdRK=K). Consequently S has no 

proper 1eft and right ideals, whence S is a subgroup of G. Thus if 

a semigroup S can be embedded in a torsion group G, then S is a 

group. The theorem is proved. 

 

DEPIRTTTOH 4. Let m and n be fixed positive integer 

so that m  n. A semigroup S will be called (m,n)-separative if  

a
m

b
n
 =a

n
b

m
 implies a =b  for all a,bS. (see [9]) 

THEOREM 6. A commutative semigroup can be embedded 

In a t oral on-free group if and only if it is a calculative  (m,n)-

separat ive semigroup for all positive  integer m>n. 
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Proof. Assume that the commutative semigroup S can be 

embedded in a torsion-free group G. We may assume that G is 

generated by S. Then G is a commutative group. let m and n be 

positive integers so that m>n and a,bS with the assumption a
m

b
n
 

a
n
b

m
. We show that a =b. Since S is cancellative, a

m-n
=b

m-n
. Since 

a,b are elements of G, there exists an element x of G such that 

ax=b. Thus, b
m-n

=(ax)
m-n

=x
m-n

 = b
m-n

x
m-n 

because G is Abelian. It 

followed that x
m-n

 is the identity of G. Hence a=b. 

Conversely, assume that a commutative semigroup S is 

cancellative and, for every positive integer m and n, a
m

b
n
 =a

n
 b

m
 

(a,bS) implies a=b. Since S is commutative and calculative, it is 

embeddable in a group G. By making use the usual construction 

of G [G=SxS/,  where (a,b)(c,d) iff ad=cb; a,b,c,dS), we 

show that G is torsion-free. Assume (a,b)
m

= (c,c) (cS) for the 

element (a,b) of G and for some positive integer m≥2. Then 

(a
m

,b
m

)=(c,c), that is, a
m

c=cb
m

 Since S is commutative, a
m

c = b
m

c 

. Since S is cancellative, a
m

=b
m

. Thus for any couple n>m of 

positive integers, b
n-m

a
n-m

= b
n-m

b
m

a
n-m

, that is, b
n-m

a
n
 whence a=b 

by the assumption for S.  Consequently,  (a,b) =(c,c), cS and so 

G is a torsion-free group. 

4- On (m.n)-separaive semigroups 

Theorem 5 showa that (m,n)-separativity is a useful condition 

for embedding in torsion-free groups. In, this section we 

inveetigate the (m,n)-separative sernigroups. 
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THBORBM 7. If an (m,n)-separative semigroup S contains an 

idempotent e, then e is the identity of S. 

Proof. Let S be an (m,n)-separative semigroup, m>n, and e an 

idempotent of S. Then, for every xS,(xe)
n
(ex)

m
=(xe)

n-1
 xex(ex)

m-

1
 = (xe)

m-1
xex(ex)

n-1 
= (xe)

m
(ex)

n
 

which implies xe = ex . Thus 

 (xe)
n
x

m
 =x

n
e

n
x

m
 =x

n
e

m
x

m
  

whence xe = x. Similarly, ex » x. Thus e is the identity 

element of S. 

THEOREK 8. If a semigroup S is a union of disjoint (n,n-2)-

separative subaemigroups S, Y, n>2, then S is separative. 

Proof, First we show -that every S is separative. Let a and b 

be any elements of S  satisfying a
2
= b

2
= ab. Then, for any positive 

integer n> 2, a
n
b

n-2
 =a

n-1
b

n-1
and a

n-2
b

n
= a

n-1
b

n-1
, is, a

n
b

n-2
 = a

n-2
b

n
. 

Hence it follows that  a » b « Sow let x.ye S so that x
2
=y

2
=xy. If 

xS, Y, then yS too. Since S is separative as just we have 

proved, x =y. 

THEOREM 9. Every (2, l)-separative semigroup is separative. 

Proof Let S be a (2,1)-separative semigroup, and a,bS such 

that a
2
= ab = b

2
. Then a

2
b =ab

2
 which implies  a= b. 

THEOREM 10. If a semigroup is the union of disjoint (2,1)-

separative semigroups, then it is separative. 

Proof 11 trivial by Theorem 8 and Theorem 9. 

THEOREM 11. A (3,1)-separative semigroup is cancellative if 

some power of it is cancellative. 



On (, n)- Separative Embedding Theorems on Semigroups...................... 

Hatem M. Amin  

9002 
 

199 

Proof, Assume that S is a (3,1) separative semigroup and there 

is a positive integer n so that S
n
 is cancellative. We may assume 

that n=2 as we have proved in the proof of Theorem 4. Then S
2
  is 

cancellative. Let a, x,yS such that ax = ay . Then a
2
xy=a

2
y

2
, 

a
2
yx=a

2
x

2
. Consequently, y

2
 = xy and x

2
 because S

2
  is 

cancellative. Thus x
3
y = xyxy = xy

3
. Since S is (3,1)- separative 

x=y. We can prove similarly that xa = ya implies x=y for any 

elements a,x,yS. Thus S is cancellative and  the theorem is 

completely proved. 
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 حول نظريات الاعمار

 (m,n)لشبه الزمر من النمط 

2

(O)[Zero element]

3

(m,n)

 


