On (m,n) - Separative

EMBEDDING THEOREMS ON SEMIGROUPS

Hatem A. Amin
Al-Mustansiryah University

College of Basic Education

Introduction

In this plper we investigate some embedding problems on
semigroups. In Section 2 we give necessary and sufficicient
conditions for semigroups to be embeddable in right groups. We
give a criterion for semigroups with zero element to be
embeddable in semigroups having a zero element 0 and being
unions of disjoint subgroup G,, aeY, such that G, Gg=0if a#f. in
Section 3 we investigate the enihedd.iag of commutative
semigroups into groups, in particular, into torsion-free groups.
For this purpose we define (m,n)-separativity of semigroups. In
Section- 4 (m,n)-separative semigroups will be studied.

For all notationa and notione which are not defined in this

paper, we refer to [1].

2. Embedding into completely reqular semigroups

DBEIN IT ION 1. A semigroups is said to be a right group if

it contained no proper left ideals and is right calculative. (see [3].
P.310).
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For the next two theorems the following lemmas are needed
([2], p-39).

LEMMA 1. A right group is the union of a set of isomorphic
disjoint groups. If e and f are distinct idem potents a right group
S, then the mapping x—xf (xeS,) is an isomorphism of the group
Se upon the group Sy (see [4]. P.258).

LEMMA 2. A semigroups is a right group if and only if it is a
union of disjoint subgroups such that the set of identity elements
of the subgroups is a right zero subsemigroup. (See (4).p. 259)
THEREM 1. A semigroup can be embedded, in a right group if
and only if it is the union of disjoint subsemigroups S,, aeY,
such that each subsemigroup S, can be embedded in a group G,
Gy M Gg, =01 if o#B and for every a and B Y there exists an
isomorphism of G, onto Gy such that

(1) a Qop Ppy = @ @y for all a eG,, asPryeY;

(i) a g b=ab forevery ae S, be S, a1feY;

(i) @y 1S the identity mapping of G, aeY

Proof. First we show that the conditions arc sufficient. Assume
that the semigroup S satieties the conditions of the theorem and
let G = U{G,:aeY} For any elements a,b of G there exist a,feY
such that ac G, and be C; Let a’b = a ¢,p. Thus we have defined,
an operation "0" on G. We prove that G(0) is a right group. The
operation is single-valued because G, N Gg, = [ if o#B. In order

to show the associatively, let a,h,c are any elements of G. Then
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a0(b°c)a’(bep,C)=aqy (DPe,C) (aPwbPp,)C=(aPepPp,bPg )= (ayb)
op,c=(a’b)°c.

If a,beG, then aob = agp,,b=ab, that is, G(0) is a semigroup which
la the union of the disjoint subgroups G,€Y. If e(eG,) and f
(eGg) are idempotent elements, then eof=e¢@,; cof =ff = f.
Consequently, the set of -the identity element a of the groups
G,aeY, is a right zero subsemigroup. Thus G a right group by
Lemma 2.

We show that S can be embedded in G. Since SeG, we have
only to prove that acb= ab for every a,b € S. Let a,b any couple of
elements of S. Then there exist a,feY so that aeS, (cG,) and
beSp(c=Gg). Thus aoh=ag,.sb=ab by Condition (ii). Consequently
S is a subsemigroup of G and the first part of the theorem is
proved.

Conversely, assume that the semigroup S is embeddable in a right
group G. By Lemma 1, G is the union of a act of isomorphic
subgroups G,, aeY. Thus S is the union of some subsemigroups
S. a€Y, where every S, can be embedded in G,. The mapping
Pop:X—xf (xeG,) Is an isomorphism of the group G,, upon. Gg
where f is the identity of Gy (see Lemma 1). Let ef,h be the
identity elements of G,,Gg and. G,, respectively, and. Let ae G,
beGg, XxeS,, YeSp a.B,yeY; Then

aQq30p, = (af)h = a(th) = ah = agy,
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XQopy = (xD)y = x(fy) = xy,= a@,, = @€ =a.

Thus the theorem is completely proved.

THEOREM 2. A semigroup having a zero element 0 can be
embedded in a semigroup which has a zero element 0' and IB the
union of disjoint subgroups G,, acY so that G,,Gg =0' for every
o£B, o,feY if and only if It is the union of disjoint
subsemigroups embedded in groups S,, a€Y such that S,,Sg=0 for
every o£p a,p €Y

Proof. Since the necessity of the coalition is trivial, we have only
to show the sufficiency. Assume that the semigroup S with zero 0
is the union of disjoint subsemigroups S, a €Y such that every S,,,
is embeddable in a group G, and S,,Sg=0 o#B a.p €Y We may
assume that G,, ie generated by S,, and so G, N Gg, = LI if a#p.
let G = U{G,:aeY}. We define an operation "0" on G as follows:
For any elements a € G, beGg, let aob = ab if a=P

and aob = 0 if a#p. It is evident, that G is a semigroup with aero
element aod G +B the union of the subgroups G,oaeY. Since
S.cG, and a,b = ab for every ab in S, the semigroup S is

embeddable in G (S is a subsemigroup of G)

3. Embedding in groups

A commutative semigroup can be embedded in a group if and
only if it is calculative. For non-connotative semigroups

cancellation is an evidently necessary condition for embed ability
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efficient condition is due to S,Lajas (see [3],p.311)

In this auction. we investigate the embedding in groups for
several ¢ lasses of commutative semigroups and deal with the
embedding of commutative semigroups into torsion-free groups.

DEPIMITION 2. lie-l, S be an arbitrary semigroup. An

clement a of Swill be called a asymmetry element if xay= yax for

every couple x,yeS (See [8])
LEMMA 3. The eel of all symmetry elements of a semigroup
S is either empty or an ideal of S.
Proof. Let a "be a symmetry element and x,y be any elements
of a semigroup S. Then, for every seS,
X(a8)y = xa(sy) = (sy)ax =s(yax)= s(xay) =
=(sx)ay=ya(sx) - y(as)x
and x(sa)y = (xa)ay = ya(xa) = (yax)s= (xay)=
=xa(ye) = (ya)ax y(sa)x.
Consequently, both as and ea belong to the set of all symmetry
element a of S. Thus the theorem is proved.
THEOREM 3. A left calculative semigroup which has a

symmetry element is commutative.
COROLLARY. A calculative semigroup which has a

symmetry element can be embedded in a group.

Proof, Assume that -the left calculative semigroup S has a
symmetry element a and. let x,y be arbitrary elements of S. By

Lemma 3, as is a symmetry element of S for any a S, and (sa)(xy)
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=(eax)y = x(as)y = y(as)x = (yas)x =(sa)(yx). Thus xy= yx
because S is left calculative.

DEPIUITIOH 3. A semigroup S is said to be separative if a’=

ab=b? implies a=b for every couple a,beS. (See [6])

THEOREM 4. A commutative separative semigroup S can

be embedded in a group if and only if some power S" (n>1) is
embeddable in a group,

Proof. If a semigroups is embeddable in a group, then every
power of it is so.

Conversely, let S be a commutative separative semigroup.
Assume that there exists a positive integer n so that S" is
embeddable in a group. Since there is a positive integer k such
2>n, $"55% and so S%is embeddable in a group. Consequently,
it sufficed to show that S is embeddable in a group if S* is
because by applying this particular proposition general times, we
get in succession that S*?, $*2..S* and finally, S can be
embedded in a group, let S be embeddable in a group. Then S is
calculative. We prove that S is calculative too Let a,x,y €S such
that ax = ay. Then ax = a’x°=a%yx and a*xy=a%y°. The elements
a’ X%, xy belong to S, hence x*= y?= xy because S is calculative
and S is commutative, Since S is separative, we get x=y This
means that S is left calculative. Similarly, S is right calculative,
Thus S can be embedded in a group, and, the theorem is proved.

Before dealing with the embedding of commutative

semigroups in torsion-free groups, we prove the
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THEOREM 5" A esmigroup which is not a group can not

be embedded in a torsion group.

Proof. Let G be a torsion group. Then, for any element a of G
there exists a positive integer n so that a" = 1 (the identity of G).
We prove that every subsemigroup of G is left simple and. right
simple. First, we show that, if K is a subsemigroup of G, then. the
left idealizer of K, Id_= {xeS: xXKcK) and the right idealizer of K
equal to K. Since G is a torsion group, the identity 1 of belongs to
K. Thus, for any x € G, x = x1 € xK and x = Ix € Kx. Hence
XKcK [KxcK] and xeK. Therefore Id K= K=IdgrK. Let S be a
subsemigroup of G. Then a subsemigroup K of S is a left [right]
ideal of S if and only if Id K>S [IdRK2S]. Thus if K is a
subsemigroup of S so that K is a left [right] ideal of S, then K =S
because Sc Id K = K [Sc 1dgK=K). Consequently S has no
proper left and right ideals, whence S is a subgroup of G. Thus if
a semigroup S can be embedded in a torsion group G, then Sis a

group. The theorem is proved.

DEPIRTTTOH 4. Let m and n be fixed positive integer

so that m n. A semigroup S will be called (m,n)-separative if
a"b" =a"b™ implies a =b for all a,beS. (see [9])

THEOREM 6. A commutative semigroup can be embedded

In a t oral on-free group if and only if it is a calculative (m,n)-

separat ive semigroup for all positive integer m>n.
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~ Proof. Assume that the commutative semigroup S can be
embedded in a torsion-free group G. We may assume that G is
generated by S. Then G is a commutative group. let m and n be
positive integers so that m>n and a,beS with the assumption a™b"
a"b™. We show that a =h. Since S is cancellative, 8" "=b™". Since
a,b are elements of G, there exists an element x of G such that
ax=b. Thus, b™"=(ax)™"=x"" = b™"x™™" because G is Abelian. It
followed that x™™" is the identity of G. Hence a=b.

Conversely, assume that a commutative semigroup S is
cancellative and, for every positive integer m and n, a™b" =a" b™
(a,beS) implies a=b. Since S is commutative and calculative, it is
embeddable in a group G. By making use the usual construction
of G [G=SxS/c, where (a,b)o(c,d) iff ad=cb; a,b,c,deS), we
show that G is torsion-free. Assume (a,b)™= (c,c) (ceS) for the
element (a,b) of G and for some positive integer m>2. Then
(@a",b™=(c,c), that is, a"c=cb™ Since S is commutative, a"c = b"c
. Since S is cancellative, a™=b™. Thus for any couple n>m of
positive integers, b"™Ma""= b""b™a"™, that is, b"™Ma" whence a=b
by the assumption for S. Consequently, (a,b) =(c,c), ceS and so
G is a torsion-free group.

4- On (m.n)-separaive semigroups

Theorem 5 showa that (m,n)-separativity is a useful condition
for embedding in torsion-free groups. In, this section we

inveetigate the (m,n)-separative sernigroups.
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THBORBM 7. If an (m,n)-separative semigroup S contains an

idempotent e, then e is the identity of S.

Proof. Let S be an (m,n)-separative semigroup, m>n, and e an
idempotent of S. Then, for every xeS,(xe)"(ex)™=(xe)"" xex(ex)™
L= (xe)™xex(ex)"™ = (xe)"(ex)"

which implies xe = ex . Thus

(xe)"x" =x"e"x" =x"e"x™

whence xe = x. Similarly, ex » x. Thus e is the identity

element of S.

THEOREK 8. If a semigroup S is a union of disjoint (n,n-2)-

separative subaemigroups S, a.eY, n>2, then S is separative.

Proof, First we show -that every S, is separative. Let a and b
be any elements of S satisfying a’= b*= ab. Then, for any positive
integer n> 2, a"b™* =a"*b"*and a"%b"= a"'b"?, is, a"b™? = a"%h".
Hence it follows that a » b « Sow let x.ye S so that x°=y*=xy. If
XeS,, aeY, then yeS, too. Since S, is separative as just we have
proved, X =y.

THEOREM 9. Every (2, I)-separative semigroup is separative.

Proof Let S be a (2,1)-separative semigroup, and a,beS such
that a’= ab = b®. Then a°b =ab® which implies a= b.

THEOREM 10. If a semigroup is the union of disjoint (2,1)-

separative semigroups, then it is separative.

Proof 11 trivial by Theorem 8 and Theorem 9.

THEOREM 11. A (3,1)-separative semigroup is cancellative if

some power of it is cancellative.
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~ Proof, Assume that S is a (3,1) separative semigroup and there
is a positive integer n so that S" is cancellative. We may assume
that n=2 as we have proved in the proof of Theorem 4. Then S? is
cancellative. Let a, x,yeS such that ax = ay . Then a’xy=a’y’,
a’yx=a’x’. Consequently, y* = xy and x° because S* s
cancellative. Thus xX°y = xyxy = xy°. Since S is (3,1)- separative
x=y. We can prove similarly that xa = ya implies x=y for any
elements a,x,yeS. Thus S is cancellative and the theorem is

completely proved.
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