# **Notes On Weakly Separation Properties**

### 1 Ali Hussein

Al-Mustansiriyah University College of Education

## ABSTRACT

In this work, we obtain the definitions to  $\alpha - T_{1/4}$  and  $\alpha - T_{1/2}$ , also we study the relationship between  $\alpha - T_0$ ,  $\alpha - T_{1/4}$ ,  $\alpha - T_{1/2}$  and  $\alpha - T_1$ , and give the relation between them and the ordinary separation axioms with examples.

### **1-Introduction**

**<u>1-1 Definition</u>**: Let (X,T) be a topological space and  $A \subseteq X$ , A is called  $\alpha$  – open set in X if and only if  $A \subseteq A^{o^{-o}}$ . the family of all  $\alpha$  –set in X denoted by  $\stackrel{\alpha}{T}$ ;  $\stackrel{\alpha}{T} = \{ A : A \subseteq X ; A \subseteq A^{\circ - \circ} \}$  where (o) is

interior and (-) is closure . [3]

### **<u>1-2 Definition :</u>**

**1-** A space X is called a  $T_{1/4}$  space , if for every finite subset F of X, and every  $y \notin F$ , there exist a set A containing F and disjoint from y, such that A either open or closed .[1]

**2-** A space X is called a  $T_{1/2}$  space, if for every singleton set in X is either open or closed .[1]

### **<u>1-3 Example :</u>**

Let X = {a,b}, T = { X,  $\phi$ , {a} }, then  $\overset{\alpha}{T}$  = { X,  $\phi$ , {a} }, this space its called a Seprenki space, and its clear is a  $T_{1/2}$ , also (X,  $T^{\alpha}$ ) its  $T_{1/2}$ .

**1-4 Definition :** Let (X,T) be a topological space and  $A \subseteq X$ , then A is called  $\alpha$ -closed set in X iff (X – A) is  $\alpha$  – open set. [3]

J. OF COL. OF B.ED.



NO. 53/2008

### **<u>1-5 Definition :</u>**

1- A space X is said to be an  $\alpha$ - $T_1$  space, if for each pair of disjoint points x and y, of X, there exist  $\alpha$  – open sets U and V in X containing x and y respectively, such that  $y \notin U$  and  $x \notin V$ .[4]

**2-** A space X is said to be an  $\alpha$ - $T_0$  space ,iff for each pair of disjoint points in X , there exist  $\alpha$  – open set in X containing one of them but not both .[4]

<u>**1-6 Proposition**</u>: Let (X,T) be a topological space , and if (X,T) is

 $T_i$  space; i=0,1, then (X,  $T_i$ ) is  $T_i$  space respectively .[5]

### 2)Weakly α-Separation Axioms Properties :

<u>**2-1 Definition</u></u> : A space X is called an \alpha - T\_{1/4} space , if for every finite subset F of X, and every y \notin F, there is exists a set A containing F and disjoint from y, such that A either \alpha –open or \alpha –closed.</u>** 

**<u>2-2 Proposition :</u>** Let (X,T) be a topological space , then (X,T) is  $\alpha - T_{1/4}$ 

space iff  $(X, T^{\alpha})$  is  $T_{1/4}$ .

**<u>Proof</u>**: let (X,T) be an  $\alpha - T_{1/4}$  space, to prove (X,  $\stackrel{\alpha}{T}$ ) is  $T_{1/4}$  space. Let F be a finite set in X and p is a point in X, such that  $p \notin F$ . Since (X,T) is  $\alpha - T_{1/4}$  space, there is V either  $\alpha$ -open or  $\alpha$ -closed containing F but not p.

So V is open or closed in  $(X, \stackrel{\alpha}{T})$ , then we have V is open or closed in  $(X, \stackrel{\alpha}{T})$  containing F not p, and hence  $(X, \stackrel{\alpha}{T})$  is  $T_{1/4}$  space.

On the other hand : let F be a finite set in X and p is a point in X, such that  $p \notin F$ .

Since  $(X, T^{\alpha})$  is  $T_{1/4}$ , there is W is open or closed set in  $(X, T^{\alpha})$  containing F not p.

J. OF COL. OF B.ED.

NO. 53/ 2008

So W is  $\alpha$ -open or  $\alpha$ -closed in (X,T) containing F not p and hence (X,T) is  $\alpha$ - $T_{1/4}$  space.

**<u>2-3 Example</u>**: Not every  $\alpha - T_{1/4}$  space is  $T_{1/4}$  space and as follows :

Let X = {a, b, c}, T = { X,  $\phi$ , {a} }, then  $\overset{\alpha}{T}$  = { X,  $\phi$ , {a}, {a,b}, {a,c}}, and let F be a set of all  $\alpha$ -closed sets ; F={X,  $\phi$ , {b,c}, {c}, {b}}.

### Its clear that (X,T) is $\alpha - T_{1/4}$ , but its not $T_{1/4}$ :

let K be a set of all closed sets in T ;  $K = \{X, \phi, \{b,c\}\}$ , and let  $\{c\}$  be a set, then its clear  $\{c\}$  is finite and  $b \notin \{c\}$ , but there is not exists open set or closed set containing  $\{c\}$  and not contain b.

**<u>2-4 Definition</u>**: A space X is said to be an  $\alpha - T_{1/2}$  space, if every singleton set in X is  $\alpha$ -open or  $\alpha$ -closed. [4]

**<u>2-5 Proposition :</u>** Let (X,T) be a topological space , then (X,T) is  $\alpha - T_{1/2}$ 

space iff  $(X, T^{\alpha})$  is  $T_{1/2}$  space .[4]

**<u>2-6 Lemma</u>**: If (X,T) is  $\alpha - T_{1/4}$  space, then (X,T) is  $\alpha - T_0$  space.

**<u>Proof</u>**: let  $p \neq q$  and  $F = \{p\}$ , since (X,T) is  $\alpha - T_{1/4}$  space, then  $\exists V \alpha$ -open or  $\alpha$ -closed set, such that  $F \subseteq V$  and  $q \notin V$ .

**Case I :** if V is  $\alpha$ -open set, then  $p \in V$  and  $q \notin V$ .

**Case II :** if V is  $\alpha$ -closed set, then  $W = X - V \in \overset{\alpha}{T}$ , and hence W containing q not p, so we have (X,T) is  $\alpha - T_o$  space.

**<u>2-7 Lemma</u>**: If (X,T) is  $\alpha - T_{1/2}$  space, then (X,T) is  $\alpha - T_{1/4}$  space.

**<u>Proof</u>**: let F be any finite set in X , and since X is  $\alpha - T_{1/2}$  space, then {p} is either  $\alpha$ -open or  $\alpha$ -closed set.

**Case I :** suppose  $\{p\}$  is  $\alpha$ -open set, and let  $W = X - \{p\}$ , then W is  $\alpha$ -closed set, and  $F \subseteq W$ , and hence  $p \notin W$ .

J. OF COL. OF B.ED.



Case II : suppose  $\{p\}$  is  $\alpha$ -closed set, and let  $W = X - \{p\}$ , then W is  $\alpha$ -open set, and  $F \subseteq W$ , and hence  $p \notin W$ .

**<u>2-8 Lemma</u>**: If (X,T) is  $\alpha$ -T<sub>1</sub> space, then (X,T) is  $\alpha$ -T<sub>1/2</sub> space.

**<u>Proof</u>**: let  $p \in X$ , to prove  $\{p\}$  either  $\alpha$ -open or  $\alpha$ -closed set.

If  $X = \{p\}$ , then  $\{p\}$  is either  $\alpha$ -open or  $\alpha$ -closed set.

If  $X \neq \{p\}$ , then  $X - \{p\} \neq \phi$ , let q be any point in  $X - \{p\}$ , then  $q \neq p$ .

Since X is  $\alpha - T_1$  space, then  $\exists U \in T^{\alpha}$ , such that U containing q not p, So  $U \cap \{p\} = \phi$ , and hence  $q \notin \{p\}' \forall U \neq p$ , so  $\{p\}$  is  $\alpha$ -closed set. **<u>2-9 Example</u>**: Not every  $\alpha - T_{1/2}$  space is  $\alpha - T_1$  space as follows:

Let X = {a, b, c}, T = {X,  $\phi$ , {a}}, then  $\stackrel{\alpha}{T} = {X, \phi, {a}, {a,b}, {a,c}},$ and let F be a set of all  $\alpha$ -closed sets; F = {X,  $\phi$ , {b,c}, {c}, {b}}. Its clear the space X is  $\alpha - T_{1/2}$ , because every singleton sets either  $\alpha$ -open or  $\alpha$ -closed set.

### A space X is not $\alpha$ -T<sub>1</sub> space because :

There is no  $\alpha$ -open set containing b and not contain a.

### A space X is not $T_{1/2}$ space because :

Let  $A = \{ X, \phi, \{b,c\} \}$  be the family of all closed sets in T, then the singleton sets  $\{b\}$  and  $\{c\}$  are not open or closed in T.

**<u>2-10 Example</u>**: Not every  $\alpha$ -T<sub>0</sub> space is T<sub>0</sub> space as follows :

Let X = {a, b, c, d}, T = { X,  $\phi$ , {a}, {a,b} },

then  $T^{\alpha} = \{ X, \phi, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,d\} \}$ , the set of all closed sets in T is  $F = \{ X, \phi, \{b,c,d\}, \{c,d\} \}$ .

Its clear that the space (X,T) is  $\alpha$ -T<sub>0</sub>, but not T<sub>0</sub>, because  $d \neq c$  and we can not disjoints between them by a sets in T.

**<u>2-11 Example</u>**: Not every  $\alpha - T_{1/4}$  space is  $\alpha - T_{1/2}$  space as follows :



Let X = [0,1), we define  $r_a = \{x : x < a\}$ , such that  $a \in (0,1)$ , Then  $T = \{r_a : a \in (0,1)\} \cup \{\phi\} \cup \{X\}$ , be a topology on X. Let  $r_a \subseteq A \subseteq r_a^{-o} = [0,1)^o = X$ , then  $A = r_a \cup A_a$ , such that  $A_a$   $\in [a,1)$ , and hence  $\stackrel{\alpha}{T} = \{r_a \cup A_a : a \in (0,1)\}$ , so  $A_a$  is  $\alpha$ -open set and  $o \in A$ .

1)) The topological space (X,T) is not  $\alpha - T_{1/2}$  space :

**Case I :** {0} is singleton set, and its clear  $\{0\} \notin \overset{\alpha}{T}$ . **Case II :** To prove  $\{0\}$  is not  $\alpha$ -closed set.

Let  $\{0\}$  be  $\alpha$ -closed set, then  $X - \{0\} \in \overset{\alpha}{T}$ ,

since  $X - \{0\}$  is  $\alpha$ -open set, then  $X - \{0\} = r_a \cup A_a$ , where  $a \in (0,1)$ , so  $a \in r_a$ , i.e.  $0 \in r_a \cup A_a$ , then  $0 \in X - \{0\}$ , this is contradiction !! i.e.  $X - \{0\}$  is not  $\alpha$ -open set, and hence  $\{0\}$  is not  $\alpha$ -closed set, and its not  $\alpha$ -open set.

**2))** (X,T) is  $\alpha - T_{1/4}$  space :

Let  $H = \{ \ a_1 < a_2 < a_3 < \ldots < a_n \ \}$  be a subset of  $\ X$  , and  $\ p \not\in H$  ,

then there exist many cases :

### Case I :

If p = 0 and  $p \notin H$ , then  $\exists t \in X$ , such that  $0 < t < a_1$ ,

let  $A = r_t \in \overset{\alpha}{T}$ , then X - A = [t, 1] is  $\alpha$ -closed set containing H not p. Case II :

Let  $p \neq 0$ , and  $0 \notin H$ , in this case we have many probabilities for position of p:

1)) if  $p > a_n$ , then  $\exists t \in X$ , such that  $a_n < t < p$ , take  $r_t$ , so  $r_t \in \overset{\alpha}{T}$  containing H not p.

2)) if  $a_i , then <math display="inline">\exists \ t \$  , such that  $\ a_i < t < p \$  , let  $\ V = r_t \ \cup \ \{a_{i+1} \ , \ \ldots,$ 

 $a_n$  } , we can see  $V \in \overset{\alpha}{T}$  containing H not p .

J. OF COL. OF B .ED.



NO. 53/ 2008

3)) if  $0 , then <math>\exists t$ , such that  $p < t < a_1$ , let  $W = X - r_t$ , then W is  $\alpha$ -closed set containing H not p.

#### Case III :

If  $a_1 = 0$ , then there is many probabilities for position of p:

1)) if  $p > a_n$ , then  $\exists t$ , such that  $a_n < t < p$ , so  $r_t$  is  $\alpha$ -open set containing H not p.

2)) if  $a_i , then <math>\exists t$ , such that  $a_i < t < p$ , then  $A = r_t \cup \{a_{i+1}, d_{i+1}\}$ 

...,  $a_n$  } , and A is  $\alpha \text{--open containing } H$  not p .

3)) if  $0 , then <math>\exists t$ , such that 0 < t < p, then  $A = r_t \cup \{a_2, a_3, d_2, d_3, d_4\}$ 

 $\ldots$  ,  $a_n$  } , and A is  $\alpha \text{--open}$  containing H not p .

From above cases , we have (X,T) is  $\alpha - T_{1/4}$  not  $\alpha - T_{1/2}$  space.

#### REFRENCE

1) Levine, N. , **Generalized Closed Set in Topology** , Rend Girc. Math. Palermo, 19(2) , pp.89-96 ,1970 .

2) Naser, A., **On Separation Properties**, M.Sc. Thesis Baghdad university, Iraq 1989.

3) Njasted,O., **On Some Class of Nearly Open Set**, pacific J. of Math., Vol.15, No.3, PP. 961-970, 1965.

4) Maki H.,Devi R. and Balochandran K., **Generalized α-Closed sets in Topology**, Bull Fukuoka Uni.Ed. Part III, 42, pp.13-21, 1993.

5)Alobaidi, A., **On Some Maps and Space**, M.Sc. Thesis Baghdad university, Iraq 1989.

6) Aggarwal,R.S., **A Text Book on Topology**, S. Hand and Company Ltd., 1996.

