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Abstract 
The main goal of this work is the implementation of cryptanalysis of DES 

and a statistical and theoretical analysis of its complexity and success 

probability. In order to achieve this goal, we implement first a very fast DES 

routine, resulting in a speed increase of almost 50 % towards the best known 

classical implementation. The experimental results suggest strongly that the 

attack is in average about 10 times faster as expected with plaintext-ciphertext at 

disposal; furthermore, we have achieved a complexity of by using only known 

pairs. Last, we propose a new analytical expression which approximates success 

probabilities; it gives slightly better results . 

1. Introduction 
The objectives of this project are the experiment and the analysis of  

linear cryptanalysis on DES. This attack was published in 1994, but no statistical 

analysis was possible at this time because computers were not fast enough. In 

this project, we first implement an efficient DES function, then run  attack and 

finally make a statistical analysis of its complexity. 

DES was an US encryption standard issued by NIST (previously NBS) in 1977 

([16]). In 1997, Biham proposed in [3] a parallel implementation inspired by 

SIMD (Single Instruction Multiple Data) architectures on regular computers 

which is the fastest at this time. According to Biham’s analysis, one can perform 

64 parallel DES computations within 16000 elementary CPU instructions on a 

64-bit microprocessor, which leads to 222 DES computations per second with a 

single microprocessor working at 1 GHz. 

So far, the best known attack on DES is  linear cryptanalysis ([11, 12]). it 

is claimed that the complexity should consist in 243 DES computations on 

average. This leads to a one CPUmonth computation.  

2. Data Encryption Standard 
The DES has been a worldwide standard for the past 25 years. In 1972, 

the former American National Bureau of Standards (NBS), now called the 

National Institute of Standards and Technology (NIST), initiated a project with 

the goal of protecting computers and digital communications data. As part of 

this program, they wanted to develop a single, standard cryptographic algorithm. 

The motivations were the following, a single algorithm could be tested and 

certified more easily than thousand’s; furthermore, it would be easier to let 

interoperate different cryptographic equipments using it. 
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The NBS issued a first public request for proposals in 1973; the number of 

received proposals indicated that there was a huge public interest in the field of 

cryptography, but very little public expertise. In fact, none of the submissions 

came only close to meeting the requirements.  

A second request in 1974 brought the cipher Lucifer, developed in the 

IBM laboratories. After a secret review from the NSA (and the reduction of the 

key size from 128 to 56 bits !), and despite a lot of criticism because of its 

obscure role, the Data Encryption Standard was adopted as a federal standard in 

1976 and authorized for use on all unclassified governmental communications 

one year later (see [16]). 

The standard was recertified in 1983, 1987 and in 1993 without a lot of 

problems. In 1997, as it was showing some signs of old age and as it can no 

more be considered as a secure algorithm, the NIST has decided to launch a 

process in order to find a successor for the next 20 years (see [1]). 

We recall here that it was possible in 1997 to build a hardware device which can 

run an exhaustive search of the key in less than 4 days with a budget of $ 

200’000, see [7] for more details and listings. Knowing that agencies (or 

criminal organizations) have millions of $ at disposal, one can have a good idea 

of the actual security of DES. However, we have to note that variants of DES, 

like Triple-DES, are still considered to be very secure. 

3. DES Algorithm 
DES is a block cipher which encrypts data in 64-bits blocks, i.e. a 64-bits 

plaintext block goes in one of the end of the algorithm and a 64-bits cipher text 

block goes out of the other end. Furthermore, DES is a symmetric algorithm, the 

same algorithm and key being employed for both encryption and decryption (up 

to a minor modification in the key schedule). The key length is 56 bits, even if it 

is often expressed as a 64-bits block, the 8 less significant bits of each byte 

being used for parity checking purposes. 

DES has a design related to two general concepts: the one of product 

cipher and the one of Feistel cipher. A product cipher combines two or more 

transformations (like substitutions, or permutations) in a manner intending that 

the result cipher is more secure than the individual components.  

A Feistel cipher (see Figure 1 and Definition 1.1) is an iterated block cipher, i.e. 

involving the sequential repetition of an internal function called the round 

function. 

Feistel Cipher 

A Feistel cipher is an iterated cipher mapping a n = 2t bits plaintext 

(which we denote (L0,R0), for t-bits blocks L0 and R0, to a ciphertext (Rr,Lr), 

through a r-round process. 

(Li,Ri) as follows: 
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where each subkey Ki is derived from the key K. 

Usual parameters of an iterated cipher are the number of rounds r, the block bit 

size n, and the bit size k of the input key K from which r subkeys Ki are derived. 

For DES, r = 16, n = 64 and k = 56. The subkeys Ki have a size of 48 bits. 

The Feistel cipher structure is guaranteed to be reversible (or, in other words, 

one can use the same function to encrypt and to decrypt the data). 

Because XOR is used to combine the left half with the output of the round 

function, following equality holds: 

 

 
Figure 1: The Feistel cipher structure of DES 

 

We can notice that the design of f doesn’t matter: for example, f don’t 

need to be invertible. As long as the inputs of f in each round can be 

reconstructed, one needs to implement only one algorithm for encryption and 

decryption. 

DES operates on a 64-bits block of plaintext. After an initial permutation , 

the block is split into a right half R and a left half L, each 32-bits long. Then, 

following the Feistel cipher concept, there are 16 rounds of identical operations, 

called function f, in which the data are combined with 16 different subkeys Ki, 

which are derived from the key K using the key scheduling algorithm. At the 
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end of the 16 rounds, the two parts L and R are combined and the inverse of IP  

finishes the algorithm. 

 

 

 
3.1 The Key Schedule 

As said before, the DES key is often expressed as a 64-bits block, where 

the least significant bits of each bytes are ignored and used as parity check to 

ensure that the key is error-free. This operation is implemented by the so-called 

permuted choice, denoted PC1, which eliminates the superfluous bits and 

permutes the remaining ones. 

After this operation, a different 48-bits subkey is generated for each of the 

16 rounds of DES in the following manner: first, the 56-bits key is divided into 

two 28-bits halves. Then, the halves are circularly shifted left by either one or 

two bits, depending of the round. After being shifted, 48 out of the 56 bits are 

selected by a compression permutation, often denoted PC2. 

Because of the shifting, a different subset of key bits is used in each subkey. 

Each bit is used in approximately 14 of the 16 rounds, but not all bits are used 

exactly the same number of times. The key scheduling algorithm is illustrated in 

Figure 2. 

3.2 The f-function 
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The f-function processing is illustrated in Figure 3. One can find the 

detailed descriptions of DES, together with the exact description of EP, PP, PC1, 

PC2, IP, IP−1 and the parameters of the circular shifts in the key scheduling 

algorithm in several good books on cryptography ([15, 18]). 

One round consists of the following operations: first, an expansion permutation, 

denoted EP, expands the 32 bits of the right half of the data Ri to 48 bits, which 

are XORed with the corresponding subkey; this sum will be the input of the 

substitution stage. 

This operation changes the order of the bits as well as repeating certain 

bits. The goals of EP are multiple: it makes the right half the same size as the 

key for the XOR operation, it provides a longer results that can be compressed 

during the substitution operation. Furthermore, it allows one bit to affect two 

substitutions, so the dependency of the output bits on the input bits spreads 

faster. One calls this effect the avalanche effect. 

 

 
Figure 3: The f-function 

The substitution stage is composed of eight different S-boxes. Each S-box 

has an input of 6 bits and a 4 bits output. The 48 bits are divided into eight 6-bits 

subblocks. Each separate block is operated on by a separate S-box. 

A S-box is a table of 4 rows and 16 columns. The first and the last bit of 

the 6 input bits specify which row is used and the four inner bits specify the 

corresponding column. 
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The S-box substitution is the critical step in DES, regarding as well its 

implementation or its security. The algorithm’s other operations are all linear 

and easy to analyse, while the S-boxes are the only non-linear steps. 

The end of the f-function consists of a straight permutation, the P-box 

permutation PP. This permutation maps each output bit of the substitution stage 

to an output position, i.e. no bits are used twice and no bits are ignored. Finally, 

the output of PP is XORed with the left half of the initial 64-bits block. Then, 

the left and right halves are permuted, following the Feistel cipher concept, and 

another round can begin. 

4. Bitsliced Implementation 
Implementing DES in software can be a very painful task in terms of 

speed. 

In this section, we present first the classical way to implement DES in software, 

then we introduce the concept of bitslicing. In a next part, we present the Intel 

Pentium MMX architecture, which was the one we used to implement a fast 

DES routine, then we discuss some issues in our optimization work and finally 

we present the speed measures of our routine. 

4.1 The Classical Way to Implement DES in Software 
The main problem which arises while implementing DES in the classical 

way is to deal effectively with the permutations. One have to consider each bit 

in a register separately, which costs a lot of time. It is possible to use lookup-

tables and streamlined operations, but these techniques are memory intensive, 

and the data quickly don’t fit anymore in the cache, which causes a severe 

slowing down of the code. An known advanced technique, which requires no 

memory, is the SWAPMOVE one. One of the quickest DES implementation 

available freely from the Internet, Eric Young’s one (see [20]), utilises it. The 

SWAPMOVE technique is described in Algorithm 1.1. 

In this process, the bits in B, masked by M, are swapped with the bits in 

A, masked by M << N. It is possible, for example, to implement the initial 

permutation IP using five SWAPMOVE operations, i.e. a total of 30 logical 

operations. 

As discussed in [17], it is straightforward to notice that a classical 

implementation of DES on modern 64-bits processors makes a very poor use of 

the computing power; for example, the XOR operation involving 32-bits values 

doesn’t use the full potential of the logical unit, and much time is wasted in 

dealing with the permutations, which can be seen as not calculating parts of the 

algorithm (this is more a data routing problem than a data transforming one !). 

The bitslicing technique was first used in the cryptography field by Biham in[3]. 

In fact, this a known implementation trick among the electronicians. 

The idea behind the bitslicing concept is quite simple: one allocates one 

register for each bit of data, instead of storing all the bits in an unique register. 
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This allows to process in a parallel way a number of bits which is equal to 

the size of the available registers. 

Let’s consider the DES algorithm: it is mainly built with permutations and 

substitutions. If we assign a register to a single bit, the permutations are dealt at 

compile-time, it is in fact an addressing problem. We don’t have to isolate a 

special bit, which costs a lot of time, because we have the bit ready in a register, 

or in a memory location hard-coded in the program. 

The only problem which remains to be solved is the substitutions one. 

Instead of using lookup tables, one have to express the S-boxes, which are the 

core of the substitution stage in DES, as their gate circuit, i.e. as a big boolean 

expression. Fortunately, as there is no loop in a S-box, we have no problem of 

conditional behaviour. 

The evaluation implementation of the boolean expressions is typically 

more expensive than a lookup-table implementation, but the fact that we can 

evaluate 32 or 64 bits in parallel decreases the costs per S-box a lot. 

Following [17], we recall here the advantages and drawbacks of a 

bitsliced Algorithm 1.1 The SWAPMOVE technique 

 
4.2 implementation: 

The permutations costs nothing at execution time; they are hard-coded in 

the implementation. 

The processor’s logical unit is used at full rate. 

The data are usually not available nor usable when they are spread 

over a bunch of registers; this implies some conversion stages that 

my be rather slow. This problem is known as the orthogonalisation 

problem. 

Table lookups are not possible anymore and have to be replaced by some 

logical computation, which may be rather painful to calculate and slow to 

execute. Furthermore, finding the optimal boolean evaluation of the S-boxes is 

not a trivial task, it is not even known if the current best schemes are optimal. 

 The resulting code is big and it is possible to loose some speed if the 

processor’s code cache is not big enough. 

 In order to get some benefit from this technique, many registers are needed, as 

memory is slow. 

 This technique is very painful when implemented by hand. 
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Although the number of drawbacks seems bigger than the number of benefits, 

Biham showed in [3] that it is possible to gain a speedup of three towards the 

best classical implementation on a Compaq (former Digital) 64-bits processor. 

5. Performance Results 
We give here the results of the performance results of our DES routine.  

We first give in Figure 5 the number of CPU cycles measurements of the 

raw code of the S-boxes. One have to notice that the input values of the S-boxes 

are not prefetched, and thus not available in the L1 cache. 

 
Figure 5: CPU cycles for the S-boxes. 

This gives in average 4.5 clock cycles per S-box per 64 bits encrypted block. 

We give now the clock cycles measurement values of the whole DES 

computation; these measures take place in two different situations: in the first 

one, the data to be encrypted are not in the L1 cache while they are in the second 

situation. 

We recall that the first situation corresponds to typical use of a DES routine, 

while the second one corresponds to our situation, where the data to be 

encrypted are in the cache at the beginning of the computation.  

der to give a comparison with classical implementations, the DES library 

considered to be the fastest at this day, Eric Young’s one (see [20]), written in 

assembly and optimized for a 32 bits architecture has a speed of 122 Mbps on an 

Intel PIII 666 MHz. One can compare this value with the one corresponding to 

the situation where the data aren’t available in the cache. 

Furthermore, one have not to forget that our implementation needs the data to be 

already spread, i.e. the orthogonalisation operation has to be done before 

encrypting. However, the goal was not to implement the fastest DES routine 

usable in the real world, but the fastest possible routine which runs under 

specific conditions, i.e. in the context of a linear cryptanalysis. 

6. Conclusion 
The aim of this research was to implement Matsui’s linear cryptanalysis 

of DES. In order to achieve this goal, we have implemented a very fast DES 

routine which runs on the Intel Pentium III MMX architecture. We managed to 

run eight times the attack, breaking thus eight DES keys. 

The experimental results have shown that the linear cryptanalysis of DES 

has a far lower complexity as expected by Matsui. This confirms what has been 

suggested several times in the literature: Matsui’s estimations are pessimistic. 

Furthermore, we have proposed an analytical expression which approximates the 

maximal rank probability of the right subkey in the list of candidates. This 

expression gives slightly better results than Matsui’s experimental ones. 
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A lot of theoretical work is still necessary in order to give a really 

accurate measure of the average complexity of the attack. Anyway, it was very 

impressive and exciting to break a DES key several times with few computer 

resources. We would like here to thank Prof. Serge Vaudenay once again for 

having proposed such a wonderful diploma thesis subject, which allowed me 

programming and experimenting at a very low-level with a modern computer 

architecture as well as doing mathematics and trying to explain in a theoretical 

way the experimental results. 
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  الخلاصه :

 م. م. محمد جاسم رضا
 ية التربيه الاساسيه/ كلالجامعه المستنصريه

 قسم الرياضيات
 

( وتطبيق DESان الهدف الاساس من هذه الدراسه هو تطبيق تحليل التشفير في )     
تحليل نظري وأحصائي لتعقيده وزيادة أحتمالية نجاحه . ومن أجل تحقيق هذا الهدف نطبق 

%( تقريبا نحو 50( السريعه جدا مما يؤدي الى زياده في السرعه بنسبة )DESأولا دورة )
التطبيق الكلاسيكي المعروف أكثر من غيره . النتائج التطبيقيه تقترح وبشده بأن الخرق 

الجاهز   )الهجوم( يكون بمعدل عشر مرات أسرع مما هو متوقع مع وجود النص الواضح
للاستخدام . ثم نكون قد حققنا تعقيدا من خلال أستخدام الازواج المعروفه . وأخيرا نقترح 

 صيغه تحليليه جديده تقرب من أحتمالية النجاج وتعطي نتائج أفضل قليلا .
 


