(T, L) Semi α- Homotopy and (T,L) semi α- Isotopy

Bushra Jaralla Tawfeeq Mathematic Department Al – Mustansirya University - College of Education

Abstract

In this work we present the definitions of (T,L) semi α -homotopy (T,L), strongly semi - α homotopy and we give the relation among them and (T,L) homotopy , (T,L) α -homotopy (T,L) semi homotopy , (T,L) strongly α - homotopy , also we present the definition of (T,L) semi α - isotropy , (T,L) strongly semi α - isotopy and we study the relation awong them and (T,L) isotopy , (T,L) α -isotopy, (T,L) strongly α - isotopy and (T,L) semi isotopy .

Several Characterization of these concepts.

1-Introduction

In 1979 Kasahara [1] introduced the concept of an operator associated to a topogolgy . In 1991 ogata [3] introduced the T-open set and study (T,L) continuous function while Rosas in 2002 study the concept of T- semi open set.

In 1965 Mjasted introduce the concept of α - set as follow a set A is called α -set if $A \subseteq A^{\circ \circ \circ}$ where (o) and (-) are interior and closure respectively . In 1983 Moshhovr and other in [6] present the concept of α - continuous . In 2002 Maiahy [2] introduce the concept of strongly α - continuous. Monsour [7] introduce the concept of T- α - operator. Mushtt [8] introduce the concept of (T,L) semi α - operator. Mushtt [8] introduce the concept of (T,L) semi α - operater, (T,L) semi α - continuous. Yousef [10] gave the concept of (T,L) α - homotopy and(T,L) α - isotopy (T,L) .To get more properties of T- operater see [4,5,9]. In this paper we present the new concepts which is the definitions of (T,L) semi α – homotopy and (T,L) strongly semi α – homotopy. Adding we define (T,L) semi α isotopy, (T,L) strongly semi α – homotopy alse we give the relationship among them and (T,L) homotopy, (T,L) α -homotopy , (T,L) strongly α – homotopy , (T,L) Semi homotopy

In §3 we present the definition of (T,L) semi α - deformation and (T,L) strongly semi α - deformation and we study the relation among them and (T,L) deformation, (T,L) α - defamation, (T,L) strongly α - deformation, (T,L) semi deformation. In §4 we define (T,L) semi α - constraction, (T,L) strongly semi

 α - constraction also we study the relation among them and (T,L) constraction, (T,L) α - constraction , (T,L) strongly α - constraction and (T,L) semi constraction.

In §5 we define (T,L) semi α - imbedding , (T,L) strongly semi α - imbedding also we study the relation among them and (T,L) imbedding , (T,L) α - imbedding , (T,L) strongly α -imbedding and (T,L) semi imbedding.

Finally in **§6** we present the definition of (T,L) semi α – isotopy.

(T,L) strongly semi α - isotopy and study the relationship among them and (T,L) isotopy, (T,L) α - isotopy (T,L) strongly α - isotopy and (T,L) semi isotopy also we give some properties of (T,L) semi α - isotopy, (T,L) strongly semi α - isotopy.

2- (T, L) Semi α - Homotopy.

In this section we define (T,L) semi α - homotopy, (T, L) strongly semi α - homotopy.

2-1 Definition : Let (\mathbf{X},Γ) and (\mathbf{Y},δ) be two topological spaces and T,L are operators associated with Γ and δ respectively. The map B: $\mathbf{X} \times \mathbf{I} \rightarrow \mathbf{Y}$ is said to be (T,L) homotopy between f, g : $\mathbf{X} \rightarrow \mathbf{Y}$ iff B (X, i), $\forall \mathbf{x} \in \mathbf{X}$, $i \in \mathbf{I}$ is (T,L) continuous s.t B(x, 0) = f(x), B(x,1) = g(x) [10].

2-2 Definition: Let (X,Γ) and (Y,δ) be two topological spaces and T,L are α operators associated with Γ and δ respectively. The map B: $X \times I \rightarrow Y$ is said to
be $(T, L) \alpha$ -homotopy between f,g : $X \rightarrow Y$ iff B $(x, i) \forall x \in X$, $i \in I$ is $(T, L) \alpha$ -continuous s.t B (x, 0) = f(x), B (x, 1) = g(x) [10].

In [10] gave the relation between above definition as follow

Theorem (1) : Every (T,L) homotopy is (T,L) α - homotopy [10].

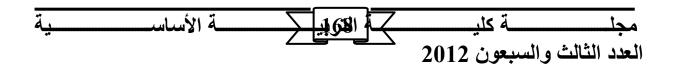
2-3 Definition: Let (X,Γ) and (Y, δ) be two topological spaces and T,L are two α -operators associated with Γ and δ respectively. The map B: $X \times I \rightarrow Y$ is said to be (T,L) strongly α -homotopy between f,g : $X \rightarrow Y$ iff B $(x, i) \forall x \in X$, $i \in I$ is (T, L) strongly α - continuons s.t B (x,0) = f(x), B (x,1) = g(x).

Theorem (2) : Every (T,L) strongly α – homotopy is (T,L) α -homotopy [10].

2-4 Definition: let (X,Γ) and (Y,δ) be two topological spaces and (T,L) are two semi operators associated with Γ and δ receptivity. The map B: $X \times I \rightarrow Y$ is said to be

(T,L) semi-homotopy between f, g iff $B(x,i) \forall x \in X$, $i \in I$ is (T,L) semi continuous s.t B(x,0) = f(x), B(x,1) = g(x).

2-5 Definition: Let (X, Γ) and (Y, δ) be two topological spaces and T, L are two semi α - operators associated with Γ and δ respectively.



The map $B: X \times I \rightarrow Y$ is said to be (T,L) semi α - homotopy between f,g : X \rightarrow Y iff B(x,i) $\forall x \in X$, $i \in I$ is (T,L) semi α - continuous s.t B(x, 0) = f(x), B(x.1) = g(x)

Theorem (3) : Every (T,L) homotopy is (T,L) semi α -homotopy

proof: Let (X, Γ) and (Y, δ) be two topological spaces and T,L are two operators associated with Γ and δ respectively and let $B : X \times I \rightarrow Y$ be(T,L) homotopy map.

That means $B(x,i) \forall x \in X$, $i \in I$ is (T,L) continuous. Sine [every (T, L) continuous is (T,L) semi α - continuous] [8]. Therefore B(x,i) is (T,L) is semi α - continuous $\forall x \in X$, $i \in I$. Then B(x,i) is (T,L) semi α - homotopy.

Theorem (4) : Every (T,L) α -homotopy is (T,L) semi α - homotopy.

proof: Let (X,Γ) and (Y, δ) be two topological spaces and T,L are two operators associated with Γ and δ respectively .Let B: $X \times I \rightarrow Y$ be $(T,L) \alpha$ -homotopy. That is B $(x,i) \forall x \in X, i \in I$ is $(T,L) \alpha$ - continuous . Since [Every $(T,L) \alpha$ - continents is (T,L) semi α - continuous] [8].Therefore B(x, i) is (T, L) is semi α - continuous. Hence B(x,i) is (T,L) semi α - homotopy.

Theorem (5): Every (T,L) strongly α – homotopy is (T,L) semi α – homotopy.

proof: (X, Γ) and (Y,δ) be two topological spaces and T,L are two α - operators associated with Γ and δ respectively. Let B: $X \times I \rightarrow Y$ be (T,L) strongly α -homotopy. That is B (x,i) is (T,L) strongly α - continuous, since [Every (T,L) strongly α - continuous is (T, L) semi α - continuous] [8]. Therefore B (x,i) $\forall x \in X$, $i \in I$ is (T,L) semi α - continuous. Hence B (x,i) is (T, L) semi α -homotopy.

Theorem (6): Every (T,L) semi homotopy is (T,L) semi α - homotopy

proof: Suppose that (X, Γ) and (Y, δ) be two topological and T,L are two semi operators with Γ and δ respectively. Since $B : X \times I \rightarrow Y$ be (T,L) semi homotopy . Then B(x, i) is (T,L) semi continuous. Since [Every (T,L) semi continuous is (T,L) semi α -continues]. Therefore B (x,i) is (T,L) semi α - continues $\forall x \in X$, $i \in I$. Hence B (x,i) is (T,L) semi α - homotopy.

2-6 Definition: Let (X, Γ) and (Y,δ) be two topological spaces and T,L are two semi α – operators associated with Γ and δ receptivity. The map B: $X \times I \rightarrow Y$ is called (T,L) strongly semi α - homotopy between f,g : $X \rightarrow Y$ iff B (x, 0) = f (x), B (x, 1) = g(x) \forall x \in X.

Theorem (7): Every (T,L) strongly semi α -homotopy is (T,L) semi α -homotopy.

Proof :- Suppose that (X,Γ) and (Y, δ) be two topological spaces and B: X× I → Y is (T.L) strongly semi α- homotopy. We get B(x.i) $\forall x \in X$. $i \in I$. is (T.L) are a space of the second secon strongly semi α – continuous. Since [Every (T,L) strongly semi α – continuous is (T, L) semi α -continuous] [8]. Then B (x,i) is (T, L) semi α - continuous and B(x,0) = f(x), B(x, 1) = g(x) $\forall x \in X$. Therefore B(x,i) is (T,L) strongly semi α -homotopy.

Theorem (8): (T,L) semi α -homotopy relation between maps X into Y is an equivalence relation.

Proof: We must to prove (T,L) semi α - homotopy is reflexive, symmetric and transitive.

Let (X,Γ) and (Y,δ) be two topological spaces and T,L are semi α -operaters associated with Γ and δ respectively.

First to show (T,L) semi α - homotopy is reflexive.

Define (T,L) semi α - homotopy B: X× I \rightarrow Y s.t B(x,i) = f(x) $\forall x \in X, i \in I$

We get B(x,0) = f(x), B(x,1) = f(x)

Thus B(x, i) is veflexive.

Then (T, L) semi α - homotopy is reflexive.

Next to show (T, L) semi α -homotopy is symmetric.

Suppose f is (T, L) semi α - homotopic to g.

Then there exists (T,L) semi α –homotopy B: X × I \rightarrow Y s.t B(x,0) = f(x) ,

B(x,i)=g(x)

We Define (T,L) semi α -homotopy K: X × I \rightarrow Y such that K(x,i) = B(x,1-i) \forall

 $x \in X, i \in I.$

We get K(x,0) = B(x, 1) = g(x), K(x, 1) = B(x, 0) = f(x)

Then g is (T, L) semi α - homotopic to f.

Thus (T, L) semi α - homotopy is symmetric.

Finally show that (T,L) semi α - homotopy is transitive.

Suppose f is (T,L) semi α - homotopic to g and is (T,L) semi α - homotopic to h.

Then there exist (T,L) semi α – homoptopy B: X × I \rightarrow Y , K: X xI \rightarrow Y

Such that B(x,0) = f(x), B(x,1) = g(x), K(x,0) = g(x), K(x,1) = h(x)

Now we define (T,L) semi α - homotopy H:XxI \rightarrow Y s.t

H(x,i): $\int B(x,2i) \quad 0 \le i \le 1/2$

H(**x**,**i**): $\int K(x, 2i-1) \quad 1/2 \le i \le 1$

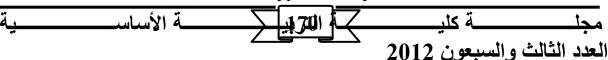
We get H(x,0) = B(x, 0) = f(x) and H(x, 1) = K(x, 1) = h(x)

Therefore f is (T,L) semi α - homotopic to h.

Hence H (x.i) is (T,L) semi α -homotopy

Thus (T, L) semi α - homotopy is transitive.

Theorem (9): 1. The (T,L) homotopy is an equivalence relation 2. The (T, L) α - homoty is an equivalence relation.



- 3. The (T,L) strongly α homotopy is an equivalence relation.
- 4. The (T,L) semi homotopy is an equivalence relation.
- 5. The (T,L) strongly semi α homotopy is an equivalence relation.

Proof 1. Let B: $X \times I \rightarrow Y$ be (T,L) homotopy. Therefore by theorem (3) B is (T,L) semi α - homotopy and by theorem (8) we get (T,L) homotopy is an equivalence relation.

2. Suppose that B: $X \times I \rightarrow Y$ is (T,L) α - homotopy. By theorem (4) B is (T, L semi α - homotopy and by theorem (8) we get (T,L) α - homotopy is an equivalence relation.

3. Suppose that B X × I \rightarrow Y be (T,L) strongly α - homotopy then by theorem (5) B is (T,L) semi α - homotopy and to theorem (8), we get (T,L) strongly α -homotopy is an equivalence relation.

4. Let $B : X \times I \to Y$ be (T,L) semi homotopy. Then by theorem (6) B is (T,L) semi α - homotopy .Therefore by theorem (8), (T,L) semi homotopy is an equivalence relation.

5. Suppose that B: $X \times I \rightarrow Y$ be (T,L) strongly semi α - homotopy then by theorem (7) B is (T,L) semi α - homotopy and by theorem (8) (T, L) strongly semi α - homotopy is an equivalence relation.

3. (T,L) Semi α - Deformation

In this section we present the definition of (T,L) semi α - deformation and strongly (T, L) semi α -deformation.

3-1 Definition: The (T,L) α -homotopy B : X × I \rightarrow Y is said to be (T,L) α -deformation iff B(x,0) is inclusion map .[10]

3-2 Definition: The (T,L) semi α - homotopy B: X × I \rightarrow Y is called (T,L) semi α - deformation iff B(x,0) is inclusion map.

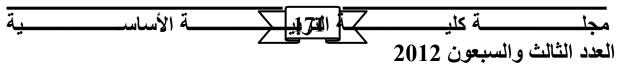
Theorem (10): Every (T,L) deformation is (T,L) semi α - deformation .

Poof : Suppose that $B : X \times I \rightarrow Y$ is (T, L) deformation.

By theorem (3) we get $B(x,i) \forall x \in X$, $i \in I$ is (T,L) semi α -homotopy and B (x,0) is inclusion map. Thus B is (T,L) semi α - deformation.

Theorem (11): Every (T,L) α -deformation is (T,L) semi α - deformation.

Proof : Suppose that $B : X \times I \rightarrow Y$ is $(T, L) \alpha$ - deformation. That mean B is $(T,L) \alpha$ - homotopy and B(x,0) is inclusion map. By theorem (4) we get B(x,i) $\forall x \in X, i \in I$ is (T,L) semi α - homotopy and B(x,0) is inclusion map. Thus B is (T,L) semi α - deformation.



(T, L) Semi α- Homotopy and (T, L) semi α- Isotopy Bushra Jaralla Tawfeeq

3-3 Definition: The (T,L) strongly α -homotopy B: X×I \rightarrow Y is called (T,L) strongly α - deformation iff B(x,0) is inclusion map.

Theorem (12) : Every (T,L)strongly α -deformation is(T,L) semi α -deformation.

Proof : Suppose that $B(x,i) \forall x \in X$, $i \in I$ is (T,L) strongly α - deformation. That is B is (T,L) strongly α -homotopy and B(x,0) is inclusion map .By theorem(5) we get B(x,i) is (T,L) semi α - homotopy and B(x,0) is inclusion map. Therefore B is (T,L) semi α - deformation.

Theorem (13): Every (T,L) semi deformation is (T,L) semi α - deformation.

Proof : Suppose B : X ×I \rightarrow Y is (T,L) semi α -deformation. Then B is (T,L) semi homotopy and B(x,0) is inclusion map. By theorem (6) we get B is (T,L) semi α -homotopy and B(x,0) is inclusion map. Therefore B is (T,L) semi α -deformation

3-4 Definition: The (T,L) strongly semi α -homotopy B : X × I \rightarrow Y is called (T,L) strongly semi α -deformation iff B(x,0) is inclusion map.

Theorem (14): Every (T,L) strongly semi α - deformation is (T,L) semi α - deformation.

Proof : Suppose $B(x,i) \forall x \in X$, $i \in I$ is (T,L) strongly semi α -deformation. That is B is (T,L) strongly semi α - homopoy and B(x,0) is inclusion map. By theorem(7). we get B(x,i) is (T,L) semi α -homotopy and B(x,0) is inclusion map. Then B is (T,L) semi α - deformation.

4- (T, L)Semi α- Constraction

In this section we use the results of previous section into define the (T,L) semi α - constraction , (T,L) strongly semi α - constraction also we study the relation between them.

4-1 Definition: Let (X,Γ) and (Y,δ) be two topological spaces and T,L are α -operators associated with Γ and δ respectively. The (T,L) semi α - deformation B : X × I → Y is called (T, L) semi α - construction iff B (x,l) is constant map.

Theorem (15): Every (T,L) construction is (T,L) semi α -construction.

Proof: Suppose B:X × I \rightarrow Y is (T,L) construction. That means B is (T,L) deformation and B (x,l) is constant map. Then by theorem (10) we get B (x,i) is (T,L)sem α - deformation. and B (x,l) is constant map. Thus B(x,i) is (T,L) semi α - construction.

Theorem (16): Every (T,L) α - constraction is (T,L) semi α - constraction .

Proof: let B: $X \times I \rightarrow Y$ is (T,L) α - construction .We get B(x,i) is (T, L) α deformation and B (x,1) is constant map. By theorem (11) B(x,i) $\forall x \in X, i \in I$ is

(T, L) Semi α- Homotopy and (T, L) semi α- Isotopy Bushra Jaralla Tawfeeq

(T,L) semi α -deformation and B (x,1) is constant map. Therefore B is (T,L) semi α - constraction.

Theorem (17): Every (T,L) strongly α - construction is (T, L) semi α - construction.

Proof : Let B (x,i) is (T, L) strongly α - construction. That mean B is (T, L) strongly α - deformation and B (x,l) is constant map. By theorem (12) B is (T,L) semi α - deformation and B(x,l) is constant map. Thus B is (T, L) semi α - construction.

Theorem (18): Every (T,L) semi constraction is (T,L) semi α - constraction.

Proof : Suppose that $B : X \times I \rightarrow Y$ is (T,L) semi constraction . That mean B is (T,L) semi- deformation and B (x,l) is constant map. And by theorem (13) B(x,i) is (T,L) semi α - deformation and B(x,l) is constaut map. Therefore B is (T,L) semi α - constraction.

4-2 Definition: Let (X,Γ) and (Y,δ) be two topological spaces and T,L are Two semi α - operators associated with Γ and δ respectively. The(T,L) strongly semi α - deformation B: X × I \rightarrow Y called (T,L) strongly semi α – constraction iff B (x,l) is constant map.

Theorem(19): Every (T,L) strongly semi α – construction is (T,L) semi α -construction.

Proof: Let B: $X \times I \rightarrow Y$ is (T,L) strongly semi α - construction. We get B is (T,L) strongly semi α - deformation and B(x,l) is constant map. And theorem (14) B(x,i) is (T,L) semi α - deformation and B(x,l) is constant map. Therefore B is (T,L) is semi α - construction.

5. (T, L) Semi α- Imbedding

We present and study in this section the definition of (T, L) semi α - Imbedding and (T, L) strongly semi α - Imbedding.

5-1 Definition : Let (X, Γ) and (Y, δ) be two topological spaces and T,L are semi α -operators associated with Γ and δ respectively, a one to one map

 $f: X \to Y$ is called (T,L) semi α - imbedding iff there exists (T,L) semi α -homeomorphism from X onto f(X).

Theorem (20): Every (T,L) imbedding is (T,L) semi α - imbedding.

Proof : Let (X,Γ) and (Y,δ) be two topological spaces and (T,L) are semi α operators associated with Γ and δ respectively and let f: $X \rightarrow Y$ be (T,L)imbedding. That means there exists (T,L) homeomorphism g: $X \rightarrow f(X)$ since
[Every (T,L) homeomorphism is (T,L) semi α – homeomorphism][8]. Then g is (T,L) semi – α - homeomorphism . Therefore f is (T,L) Semi α - imbedding.
Theorem (21): Every $(T,L) \alpha$ - imbedding is (T,L) semi α - imbedding.

Proof: Let (X, Γ) and (Y, δ) be two topological spaces and T,L are two semi α operator associated with Γ and δ respectively. Let f: $X \rightarrow Y$ be $(T,L) \alpha$ imbedding Then there exists $(T,L) \alpha$ - homeomorphism g:X \rightarrow f (X). Since
[Every $(T,L) \alpha$ - homeomorphism is (T,L) semi α - homeomorphism] [8]. Then
g is (T, L) is semi α - homeomorphism. Therefore f is (T,L). semi α - imbedding. **Theorem (22)**: Every (T,L) strongly α - imbedding is (T,L) semi α imbedding.

Proof : Suppose that (X,Γ) and (Y,δ) be two topological spaces and T,L are two α - operators associated with Γ and δ respectively and f: $X \rightarrow Y$ be (T, L) strongly α - imbedding. Then there exists (T, L) strongly α - homeomorphism g: $X \rightarrow f(X)$

Since [Every (T,L) strongly α - homeomorphism is (T,L) semi α -homeomorphism][8].Therefore g is (T,L) semi α - homeomorphism. Hence f is(T,L) semi α – imbedding.

Theorem (23): Every (T,L) semi imbedding is (T,L) semi α - imbedding.

Proof : let (X, Γ) and (Y,δ) be two topological spaces and T,L are two semi operators associated with Γ and δ respectively and f: $X \rightarrow Y$ be (T,L) semi imbedding. Then \exists (T,L) semi homeomorphism. g: $X \rightarrow f(X)$ Since[Every (T,I) semi homeomorphism is (T,L) semi α -homeomorphism].

Then g is (T,L) semi α - homeomorphism. Hence f is (T, L) semi α - imbedding.

5-2 Definition : Let (x, Γ) and (Y,δ) be two topological spaces and T,L are two semi α - operators associated with Γ and δ respectively. A one to one map $f: X \rightarrow Y$ is called (T,L) strongly semi α -imbedding iff there exists a (T,L) strongly semi α - homeomorphism from X on to f (X).

Theorem (24): Every (T,L) strongly semi α - imbedding is (T,L) semi α - imbedding.

Proof: Let (X, Γ) and (Y,δ) be two topological spaces and T,L are two semi α operators associated with Γ and δ respectively. Let f: X \rightarrow Y be (T,L) strongly
semi α - imbedding. Then there exists (T,L) strongly semi α - homeomorphism
g : X \rightarrow f(X) [Every (Y,L) strongly semi α - homeomorphism is (T,L) semi α homeomorphism][8].

Therefore g is (T,L) semi $\alpha \text{-}$ homeomorphism . Hence f is (T,L) semi $\alpha \text{-}$ imbedding.

6.(T,L) Semi α- Isotopy

In the section we define and study (T,L) semi α - isotopy , (T,L) strongly semi α - isotopy.

6-1 Definition: let (X,Γ) and (Y,δ) two topological spaces and T,L are semi α -operators associated with Γ and δ respectively . A map $B : X \times I \rightarrow Y$, I = [0,1]

Bushra Jaralla Tawfeeq

is said to be (T,L) semi α - isotopy between f, g: X \rightarrow Y iff B(x,i) $\forall x \in X, i \in I$ is (T,L) semi α -imbedding s.t B (x,0) = f (x), B (X, 1) = g (x)

Theorem (25): Every (T,L) isotropy is (T,L) semi α - isotopy

Proof :- Let (X,Γ) and (Y,δ) be two topological spaces and T,L are semi α operators associated with Γ and δ respectively. Let $B : X \times I \rightarrow Y$ be (T, L)isotopy map between f, g $X \rightarrow Y$. That mean B (x,i) is (T,L) imbedding s.t B $(x,0) = f(x), \qquad B(x,1) = g(x)$ then by theorem(15) B $(x,i) \forall x \in X, i \in I$ is (T,L) semi α - imbedding. Thus B (x, i) is (T,L) semi α - isotopy.

Theorem (26) : Every $(T, L) \alpha$ - isotopy is (T,L) semi α - isotopy.

Proof : Let (X, Γ) and (Y, δ) be two topological spaces and T,L are α -operators associated with Γ and δ respectively. Suppose $B : X \times I \rightarrow Y$ is $(T,L) \alpha$ - isotopy. Therefore B(x,i), $x \in X$, $i \in I$ is $(T,L) \alpha$ - imbedding s.t B(x,0) = f(x), B(x,l) = g(x) then by theorem (16) $B(x,i) \forall x \in X$, $i \in I$ is (T,L) semi α - imbedding . Therefore B(x,i) is (T,L) semi α -isotopy.

Theorem(27) : Every (T,L) strongly α - isotopy is (T,L) α - isotopy.

Proof : Let (X,Γ) and (Y,δ) be two topological spaces and T,L are α - operators associated with Γ and δ respectively.

Suppose that B : X × I → Y is (T,L) strongly α - isotopy. Therefore B (x,i) $\forall x \in X$, $i \in I$ is (T,L) strongly α – imbedding s.t B (x, 0) = f (x), B(x,l) = g (x) then by theorem (17) we get B(x,i) is (T,L) semi α - imbedding s.t B(x,o) = f(x), B (x,l) = g(x) Thus B is (T,L) semi α – isotopy.

Theorem(28): Every (T,L) semi isotopy is (T,L) semi α -isotopy.

Proof : Let (X,Γ) and (Y,δ) be two topological spaces and T,L are semi – operator associated with Γ and δ respectively. Suppose that $B : X \times I \rightarrow Y$ is (T,L) semi isotopy, therefore B(x,i) is (T,L) semi imbedding s.t B(x, l) = f(x), B(x,o) = g(x) by theorem (18) we get B(x,i) is (T,L) semi α - imbedding s.t B(x,l) = g(x). Hence B is (T, L) semi α - isotopy.

6-2 Definition: Let (X,Γ) and (Y,δ) two topological spaces and T,L are two semi α - opeteros assolated with Γ and δ respectively. A map B : X×I \rightarrow y , I = [0,1] is said to be (T,L) strongly semi α - istotopy between f, g : X \rightarrow Y iff B (x,i) $\forall x \in X, i \in I$ (T,L) strongly semi α - imbedding s.t B(x,0) = f(x), B (x,i) = g (x).

Theorem (29): Every (T,L) strongly semi α - isotopy is (T,L) semi α - isotopy.

Proof: Suppose that (X,Γ) and (Y,δ) be two topological spaces and T,L are semi α - operators associated with Γ and δ respectively. Let B: $X \times I \rightarrow Y$ be (T,L) strongly semi α - istopoy. We get B (x,i), $\forall x \in X, i \in I$ is (T,L) strongly semi α - imbedding s.t B(x,0) = f(x), B (x,i) = g(x) then by theorem (19) we get

بة الأساس		,is ä	محا
**		**	*
		ث والسبعون 2012	العدد الثال

(T, L) Semi α- Homotopy and (T, L) semi α- Isotopy Bushra Jaralla Tawfeed

Bushra Jaralla Tawfeeq

B(x,i), $\forall x \in X$, $i \in I$ is (T,L) semi α - imbedding s.t B(x,o) = f(x), B(x,1) = g(x). Thus B(x,i) is (T, L) semi α - isotopy.

Theorem (30): The (T,L) semi α - isotopy relation between maps X into Y is an equivalence relation.

Proof : We must to prove (T,L) semi α - isotopy is reflexive, symmetric and transitive.

Let (X,Γ) and $)(Y, \delta)$ be two topological spaces and T,L are semi α - operators associated with Γ and δ respectively. First to show (T,L) semi α - isotopy is reflexive.

Let $f : X \rightarrow Y$ be any map.

Define (T,L) semi α - isotopy B : X× I \rightarrow Y by B(x,i) = f(x) $\forall x \in X, i \in I$, we get B (x,o) = f(x),B (x, l) = f(x).

Therefore (T, L) semi α isotopy is reflexive.

Next to show (T,L) semi α – isotopy is symmetric.

Suppose $f : X \rightarrow Y$ s.t f is (T, L) semi α - isotopic to g then $\exists B : X \times I \rightarrow Y$ s.t B (x, 0) = f(x), B (x, 1) = g(x).

Define (T,L)semi α - isotopy K : X× I \rightarrow Y s.t K (x, i) =B (x, l-i) $\forall x \in X, i \in I$. We get K (x,0) = B (x,1) = g(x), K (x,1) = B (x,0) = f(x).

Then g is (T,L) semi α – isotopic to f . Thus (T,L) semi α - isotopy is symmetric.

Finally suppose f is (T,L) semi α – isotopic to f and is (T,L) semi α – isotopic to h, then there exist (T,L) semi α – isotopy B: X×I \rightarrow Y, K : X×I \rightarrow Y s.t B(x,0) = f(x), B (x,1) = g(x), K (x,0) = g(x), K(x,1) = h(x)

We define (T, L) semi α - isotopy $H: X \times I \rightarrow Y$ s.t

 $H(x,i) = \begin{cases} B(x,2i) & 0 \le i \le 1/2 \\ K(x,2i-1) & 1/2 \le i \le 1 \\ We \text{ get } H(x,0) = B(x,0) = f(x) & H(x,0) \end{cases}$

We get H(x,o) = B(x, o) = f(x), H(x,1) = K(x,1) = h(x)

Therefore f is (T,L) semi α - isotopic to h

Hence H (x,i) is (T,L) semi α - isotopy.

Thus (T, L) semi α - isotopy is transitive.

Theorem (31):

1- The (T,L) isotopy is an equivalenc relation

2- The (T,L) α – isotopy is an equivalenc relation

3- The (T,L) strongly α - isotopy is an equivalence relation

4- The (T,L) semi is isotopy is an is an equivalence relation

5- The (T,L) strongly semi α - isotopy is an equivalence relation

proof 1. Let $B : X \times I \to Y$ be (T,L) isotopy. Therefore by theorem (25) B is (T,L) semi α - isotopy and theorem (30) we get (T,L) isotopy is an equivalence relation.

2. Suppose that B: $X \times I \rightarrow Y$ is (T,L) α - istopoy. By theorem (26) B is (T,L) semi α - isotopy. And by theorem (30) we get (T,L) α - isotopy in an equivalence relation.

3. Suppose that $B : X \times I \rightarrow Y$ be (T,L) strongly α - isotopy then by theorem (27)

B is (T,L) semi α – isotopy and by theorem (30) we get (T,L) strongly α – isotopy is an equivalence relation.

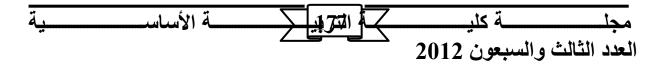
4. Let B : $X \times I \rightarrow Y$ be (T,L) semi isotopy then by th theorem (28) B is (T,L) semi α - isotopy. By theorem (30) we get (T, L) semi isotopy is an equivalence relation.

5. Let B : $X \times I \rightarrow y$ be (T,L) strongly semi α - isotopy , then by theorem (29) we get B is (T,L) semi α – isotopy . By theorem (30) we get (T, L) strongly semi α -isotopy is an equivalence relation

References

- 1. S.K. Kasahara, "Operation Compact spaces" Mathematica Japonica ,Vol. (21), pp97-105 , 1979.
- 2. K.A Al Miahi , " Studies in α space " , M. Sc thesis , Al- Bayet Univ. Jardan (2002).
- 3. H. Ogata ," Operation on topological spaces and associated topology", Math. Japonica 36, No .1, pp 175-184,1991.
- 4. E. Rosas , J. Vielma and C. Carpintero ," α semi connected and locally α semi connected properties in topology spaces", scientiae mathematica Japonicae online , Vol. 6 pp465-472, 2002.
- 5. O.Njasted " On some class of Nearly open sets, " pacific J. of Math. , Vol. (15), No.3, pp961-970 , 1965.
- 6. A.S.Mashhour , A , Hasanein and I, A. El .Deeb, " α continuous and α open mapping ", A cta, Math , 4(3-4) , pp. 213-218, 1983.
- 7. N.G . Mansour , A.M Ibrahim " T- α operator " J . of colloge of education No. 3, 2006.
- 8. I.Z .Mushtt "T semi α operatar, "College of education , to apper.
- 9. A.A. Qassim "The operater T and new types of open sets and spaces ", M.Sc .thesis .Mutah University 2004..
- 10.S.M . Yousif ," On the (T,L) $\alpha\text{-}$ homotopy and (T,L) $\alpha\text{-}$ isotopy" colloge of education , to opper.

<u>الخلاصة</u>



(T, L) Semi α- Homotopy and (T, L) semi α- Isotopy Bushra Jaralla Tawfeeq

في هذا البحث قدمنا تعريف (T,L) شبه α هموتوبي ، (T,L) شبه α هموتوبي بقوة ودرسنا العلاقة بينهم وبين (T,L) هموتوبي ، (T,L) α – هموتوبي و (T,L) شبه هموتوبي ، (X,C) α هموتوبي بقوة كذلك قدمنا تعريف (T,L) شبه α – ايزوتوبي و (T,L) شبه α ايزوتوبي بقوة ودرسنا العلاقة بينهم وبين (T,L) ايزوتوبي و (T,L) مايزوتوبي ، (T,L) شبه ايزوتوبي ، و (T,L) α – ايزوتوبي بقوة واعطينا عدة تمييزات لهذه المفاهيم.

