\qquad

On bounded operator equation

$\boldsymbol{A}^{*} \boldsymbol{X} \boldsymbol{B}^{*}+\boldsymbol{B} \boldsymbol{X}^{*} \boldsymbol{A}=\boldsymbol{C}$
Dr. Salim D. M
Ahmed M.K.
AL-Mustansiriya University
College of Education/ Department of mathematics

Abstract

In this paper, we give the general solutions of bounded operator equation $A^{*} X B^{*}+B X^{*} A=C$ (1), where A and B are noninvertible operator .on complex Hilbert space H and properties of the mapping $\mu_{A, B}(X)=A^{*} X B^{*}+B X^{*} A$

INTRODUCTION

In 2007 D. S. Djordjevic [2], find the explicit solution of operator equation $A^{*} X+X^{*} A=B$ for linear operators on Hilbert spaces. Dragana S . in 2008 generalized the result of D. S. Djordjevic in to operator equation $A X B+B^{*} X^{*} A^{*}=C[1]$, and study solvability of this operator equation.The purpose of this paper is modify the operator equation appear in [1] and give the necessary and sufficient conditions to get the general explicit solution of bounded operator equation $A^{*} X B^{*}+B X^{*} A=C$ where A and B are noninvertible operator, as well as studied some properties of nonlinear operator mappings $\mu_{A, B}(X)=A^{*} X B^{*}+B X^{*} A, \quad X \in B(H)$. Let H be arbitrary complex Hilbert space, $B(H)$ be the space of all bounded linear operators from H into H. Let $\mu_{A}: B(H) \rightarrow B(H)$, be the mapping defined as follow $\mu_{A, B}(X)=A^{*} X B^{*}+B X^{*} A, X \in B(H)$, where A and B is known operators in $B(H)$.but X is unknown operator must be determine and then $\operatorname{Rang}\left(\mu_{A}\right)=\left\{A^{*} X B^{*}+B X^{*} A, X \in B(H)\right\}$. Also, here we need recall some basic concept of operator that the adjoint operator A^{*} of $A \in B(H, K)$ is the operator $A^{*}: K \rightarrow H$ such that $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$, where for all $x \in H$ and $y \in K$, an operator A is said to be self-adjoint if $A^{*}=A$, and skew-adjoint if $A^{*}=-A$,[4], The moor-penrose inverse of $A \in B(H, K)$ is defined as the operator $A^{+} \in B(K, H)$ satisfying the equations $A A^{+} A=A, A^{+} A A^{+}=A^{+},\left(A A^{+}\right)^{*}=A A^{+},\left(A^{+} A\right)^{*} A^{+} A$, also for the mapping $\mu_{A, B}$ if $\mu_{A, B}(X Y)=X \mu_{A, B}(Y)+\mu_{A, B}(X) Y$, for all $X, Y \in B(H)$, then the mapping $\mu_{A, B}$ is derivation .

On bounded operator equation $A^{*} \boldsymbol{X} \boldsymbol{B}^{*}+\boldsymbol{B} \boldsymbol{X}^{*} \boldsymbol{A}=\boldsymbol{C}$
Dr. Salim D. M , Ahmed M.K.
1-The solution of operator equation $A^{*} X B^{*}+B X^{*} A=C$:
in this section, we give the general solution for the operator equation : $A^{*} X B^{*}+B X^{*} A=C \ldots(1)$, where A, B, C are known and X is unknown operator on H that must be determined. The following theorem introduce the general solution for the nonlinear operator equation (1) by giving the necessary and sufficient conditions, where A and B are bounded invertible operator define on Hilbert space H.

Theorem (1.1):

Let $A \in B(H, K)$ and $B \in B(K, H)$ be an invertible operators if $C \in B(K)$ is a self-adjoint operator. then $X=\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1} \quad$ where $Z \in B(H)$ is a skew-adjoint operator.

Proof:

Let X be any solution of equation (1), then $A^{*} X B^{*}+B X^{*} A=C$
and hence, $X=\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}-\left(A^{*}\right)^{-1} B X^{*} A\left(B^{*}\right)^{-1}$

$$
\begin{aligned}
& =\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}-\left(A^{*}\right)^{-1} B X^{*} A\left(B^{*}\right)^{-1} \\
& =\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left[\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}-\left(A^{*}\right)^{-1} B X^{*} A\left(B^{*}\right)^{-1}\right] \\
& \left.=\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1}\left[\frac{1}{2} A^{*} X B^{*}+\frac{1}{2} B X^{*} A-B X^{*} A\right] B^{*}\right)^{-1} \\
& =\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1}\left[\frac{1}{2} A X B-\frac{1}{2} B X^{*} A\right]\left(B^{*}\right)^{-1}
\end{aligned}
$$

Let $Z=\frac{1}{2} A^{*} X B^{*}-\frac{1}{2} B X^{*} A$ then $Z^{*}=\left[\frac{1}{2} A^{*} X B^{*}-\frac{1}{2} B X^{*} A\right]$

$$
\begin{aligned}
& =\left[\frac{1}{2} B X^{*} A-\frac{1}{2} A^{*} X B^{*}\right] \\
& =-Z .
\end{aligned}
$$

Therefore; Z is a skew-adjoint operator
Then any solution of operator equation (1) has the form $X=\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1}$
Now, The following proposition give the sufficient condition shows that converse of above theorem is true

Proposition (1.2):

Let $A \in B(H, K)$ and $B \in B(K, H)$ be invertible operators. If $X=\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1}$ is a general solution of equation (1)
\qquad
Dr. Salim D. M , Ahmed M.K.
then $C \in B(K)$ is a self -adjoint operator, where $Z \in B(H)$ is a skew-adjoint operator.

Proof:

Assume that $X=\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1}$ is a general solution of operator equation (1) then its satisfy this equation, thus we get:
$A^{*}\left(\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1}\right) B^{*}+B\left(\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1}\right)^{*} A=C$ and reduces into $C=C^{*}$, therefore; $C \in B(H)$ is a self -adjoint operator. Now, from above theorem (1.1) its easy to get the following corollary Corollary (1.3):
Let $A \in B(H, K)$ and $B \in B(K, H)$ be an invertible operators and $Z \in B(H)$ is skew adjoint operator. Then $X=\frac{1}{2}\left(A^{*}\right)^{-1} C\left(B^{*}\right)^{-1}+\left(A^{*}\right)^{-1} Z\left(B^{*}\right)^{-1}$ is a general solution of equation $A^{*} X B^{*}-B X^{*} A=C$ if and only if $C \in B(K)$ is a skewadjoint operator.
Now, we give the general solution of nonlinear operator equation (1), when B is invertible operator and A is noninvertible operator
Theorem (1.4):
Let $A \in B(H, K)$ and $B \in B(K, H)$ be an operators and A has closed range. Then equation (1) has solution if and only if $C=C^{*}$ and $\left(I-D^{+} D\right) E\left(I-D^{+} D\right)=0$, where $D=A\left(B^{-1}\right)^{*}, E=B^{-1} C\left(B^{*}\right)^{-1}$.

Proof:

In first we reduced equation (1) in to $B^{-1} A^{*} X+X^{*} A\left(B^{*}\right)^{-1}=B^{-1} C\left(B^{-1}\right)^{*}$
We claim $\quad X=\frac{1}{2}\left(D^{*}\right)^{+} E+\frac{1}{2}\left(D^{*}\right)^{+} E\left(I-D^{+} D\right)+\left(Z-Z^{*}\right) D$ is a general solution of equation (1). To do this substitute in the left side of operator equation $D^{*} X+X^{*} D=E$ then we get:

$$
\begin{aligned}
D^{*} X+X^{*} D=D^{*} & \left(\frac{1}{2}\left(D^{*}\right)^{+} E+\frac{1}{2}\left(D^{*}\right)^{+} E\left(I-D^{+} D\right)+\left(Z-Z^{*}\right) D\right) \\
& +\left(\frac{1}{2}\left(D^{*}\right)^{+} E+\frac{1}{2}\left(D^{*}\right)^{+} E\left(I-D^{+} D\right)+\left(Z-Z^{*}\right) D\right)^{*} D \\
& =\frac{1}{2}\left(D^{+} D\right)^{*} E+\frac{1}{2}\left(D^{+} D\right)^{*} E\left(I-D^{+} D\right)+D^{*} Z D-D^{*} Z^{*} D \\
& +\frac{1}{2} E^{*} D^{+} D+\frac{1}{2}\left(I-\left(D^{+} D\right)^{*}\right) E^{*} D^{+} D+D^{*} Z^{*} D-D^{*} Z D
\end{aligned}
$$

And by using the condition $C=C^{*}$ one can have :

$$
=\frac{1}{2} D^{+} D E+\frac{1}{2} D^{+} D E\left(I-D^{+} D\right)+\frac{1}{2} E D^{+} D+\frac{1}{2}\left(I-D^{+} D\right) E D^{+} D
$$

On bounded operator equation $A^{*} X B^{*}+B X^{*} A=C$ \qquad
Dr. Salim D. M , Ahmed M.K.
$=\frac{1}{2} D^{+} D E+\frac{1}{2} D^{+} D E-\frac{1}{2} D^{+} D E D^{+} D+\frac{1}{2} E D^{+} D+\frac{1}{2} E D^{+} D-\frac{1}{2} D^{+} D E D^{+} D$
$=E D^{+} D+D^{+} D E-D^{+} D E D^{+} D$
= E
Conversely, since $A^{*} X B^{*}+B X^{*} A=C$ so, $\left(A^{*} X B^{*}+B X^{*} A\right)^{*}=C^{*}$, therefore; $B X^{*} A+A^{*} X B^{*}=C^{*}$, then, $C=C^{*}$.
Also , $\left(I-D^{+} D\right) E\left(I-D^{+} D\right)=\left(I-D^{+} D\right)\left(D^{*} X+X^{*} D\right)\left(I-D^{+} D\right)$

$$
\begin{aligned}
& =\left[D^{*} X+X^{*} D-D^{+} D D^{*} X-D^{+} D X^{*} D\right] \cdot\left(I-D^{+} D\right) \\
& =\left[D^{*} X+X^{*} D-\left(D^{+} D\right)^{*} D^{*} X-D^{+} D X^{*} D\right] \cdot\left(I-D^{+} D\right) \\
& =\left[D^{*} X+X^{*} D-D^{*}\left(D^{+}\right)^{*} D^{*} X-D^{+} D X^{*} D\right] \cdot\left(I-D^{+} D\right) \\
& =\left[D^{*} X+X^{*} D-D^{*} X-D^{+} D X^{*} D\right] \cdot\left(I-D^{+} D\right) \\
& =\left[X^{*} D-D^{+} D X^{*} D\right] \cdot\left(I-D^{+} D\right) \\
& =X^{*} D-D^{+} D X^{*} D-X^{*} D D^{+} D+D^{+} D X^{*} D D^{+} D \\
& =X^{*} D-D^{+} D X^{*} D-X^{*} D+D^{+} D X^{*} D \\
& =0
\end{aligned}
$$

Now, we give the general solution of nonlinear operator equation when A is invertible operator and B is noninvertible operator

Theorem (1.5):

Let $A \in B(H, K)$ and $B \in B(K, H)$ be an operators and B has closed range. Then equation (1) has solution if and only if $C=C^{*}$ and $\left(I-D D^{+}\right) E\left(I-D D^{+}\right)=0$, where $D=\left(A^{*}\right)^{-1} B, E=\left(A^{*}\right)^{-1} C A^{-1}$.

Proof:

In first we reduced equation (1) in to $X B^{*} A^{-1}+\left(A^{*}\right)^{-1} B X^{*}=\left(A^{*}\right)^{-1} C A^{-1}$ We claim $\quad X=\frac{1}{2} E\left(D^{+}\right)^{*}+\frac{1}{2}\left(I-D D^{+}\right) E\left(D^{+}\right)^{*}+D\left(Z-Z^{*}\right)$ is a solution of equation (1). To do this substitute in the left side of operator equation $X D^{*}+D X^{*}=E$ then we get:
$X D^{*}+D X^{*}=\left(\frac{1}{2} E\left(D^{+}\right)^{*}+\frac{1}{2}\left(I-D D^{+}\right) E\left(D^{+}\right)^{*}+D\left(Z-Z^{*}\right)\right) D^{*}$
$+D\left(\frac{1}{2} E\left(D^{+}\right)^{*}+\frac{1}{2}\left(I-D D^{+}\right) E\left(D^{+}\right)^{*}+D\left(Z-Z^{*}\right)\right)^{*}$
$=\frac{1}{2} E\left(D^{+}\right)^{*} D^{*}+\frac{1}{2}\left(I-D D^{+}\right) E\left(D^{+}\right)^{*} D^{*}+D Z D^{*}-D Z^{*} D^{*}$
$+\frac{1}{2} D D^{+} E^{*}+\frac{1}{2} D D^{+} E^{*}\left(I-D D^{+}\right)^{*}+D Z^{*} D^{*}-D Z D^{*}$
$=\frac{1}{2} E\left(D D^{+}\right)^{*}+\frac{1}{2} E\left(D D^{+}\right)^{*}-\frac{1}{2} D D^{+} E\left(D D^{+}\right)^{*}+\frac{1}{2} D D^{+} E^{*}+\frac{1}{2} D D^{+} E^{*}-\frac{1}{2} D D^{+} E^{*}\left(D D^{+}\right)^{*}$
And by using the condition $C=C^{*}$ one can have:

On bounded operator equation $A^{*} X B^{*}+B X^{*} A=C$ \qquad
Dr. Salim D. M , Ahmed M.K.
$=\frac{1}{2} E D D^{+}+\frac{1}{2} E D D^{+}-\frac{1}{2} D D^{+} E D D^{+}+\frac{1}{2} D D^{+} E+\frac{1}{2} D D^{+} E-\frac{1}{2} D D^{+} E D D^{+}$
$=E D D^{+}+D D^{+} E-D D^{+} E D D^{+}$
= E
Conversely, since $A^{*} X B^{*}+B X^{*} A=C$ so, $\left(A^{*} X B^{*}+B X^{*} A\right)^{*}=C^{*}$, therefore; $B X^{*} A+A^{*} X B^{*}=C^{*}$, then, $C=C^{*}$.
Also, $\left(I-D D^{+}\right) E\left(I-D D^{+}\right)=\left(I-D D^{+}\right)\left(X D^{*}+D X^{*}\right)\left(I-D D^{+}\right)$

$$
\begin{aligned}
& =\left(I-D D^{+}\right)\left(X D^{*}+D X^{*}-X D^{*}-D X^{*} D D^{+}\right) \\
& =D X^{*}-D X^{*} D D^{+}-D X^{*}+D X^{*} D D^{+} \\
& =0
\end{aligned}
$$

Now, we give the general solution of nonlinear operator equation when A and B are noninvertible operator

Theorem (1.6):

Let $A \in B(H, K), B \in B(K, H)$ and D be an operators have closed range then equation (1) has general solution if and only if $C=C^{*},\left(I-D^{+} D\right) E\left(I-D^{+} D\right)=0, \quad$ where $\quad D=A\left(B^{+}\right)^{*}, \quad E=B^{+} C\left(B^{+}\right)^{*} \quad$ and $A^{*} B B^{+}=B B^{+} A^{*}$.

Proof:

In first we reduced equation (1) in to $B^{+} A^{*} X B^{*}\left(B^{+}\right)^{*}+B^{+} B X^{*} A\left(B^{+}\right)^{*}=B^{+} C\left(B^{+}\right)^{*}$ We claim $\quad X=\frac{1}{2}\left(D^{*}\right)^{+} E+\frac{1}{2}\left(D^{*}\right)^{+} E\left(I-D^{+} D\right)+B B^{+}\left(Z-Z^{*}\right) D$ is a general solution of equation (1). To do this substitute in the left side of operator equation $D^{*} X B^{*}\left(B^{+}\right)^{*}+B^{+} B X^{*} D=E$ then we get:

$$
\begin{aligned}
& D^{*} X B^{*}\left(B^{+}\right)^{*}+B^{+} B X^{*} D=D^{*}\left(\frac{1}{2}\left(D^{*}\right)^{+} E+\frac{1}{2}\left(D^{*}\right)^{+} E\left(I-D^{+} D\right)+B B^{+}\left(Z-Z^{*}\right) D\right) B^{*}\left(B^{+}\right)^{*} \\
& +B^{+} B\left(\frac{1}{2}\left(D^{*}\right)^{+} E+\frac{1}{2}\left(D^{*}\right)^{+} E\left(I-D^{+} D\right)+B B^{+}\left(Z-Z^{*}\right) D\right)^{*} D \\
& =\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E B^{*}\left(B^{+}\right)^{*}+\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E\left(I-D^{+} D\right) B^{*}\left(B^{+}\right)^{*}+D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*} \\
& +\frac{1}{2} B^{+} B E^{*} D^{+} D+\frac{1}{2} B^{+} B\left(I-\left(D^{+} D\right)^{*}\right) E^{*} D^{+} D+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D
\end{aligned}
$$

And by using the condition $C=C^{*}$ one can have:

$$
\begin{aligned}
& =\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E B^{*}\left(B^{+}\right)^{*}+\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E\left(I-D^{+} D\right) B^{*}\left(B^{+}\right)^{*}+D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*} \\
& +\frac{1}{2} B^{+} B E D^{+} D+\frac{1}{2} B^{+} B\left(I-D^{+} D\right) E D^{+} D+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D \\
= & \frac{1}{2} D^{*}\left(D^{+}\right)^{*} E B^{*}\left(B^{+}\right)^{*}+\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E B^{*}\left(B^{+}\right)^{*}-\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E D^{+} D B^{*}\left(B^{+}\right)^{*}+D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*}
\end{aligned}
$$

On bounded operator equation $A^{*} X B^{*}+B X^{*} A=C$
Dr. Salim D. M , Ahmed M.K.

$$
\begin{aligned}
& +\frac{1}{2} B^{+} B E D^{+} D+\frac{1}{2} B^{+} B E D^{+} D-\frac{1}{2} B^{+} B D^{+} D E D^{+} D+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D \\
= & D^{*}\left(D^{+}\right)^{*} D E B^{*}\left(B^{+}\right)^{*}+B^{+} B E D^{+} D-\frac{1}{2} D^{*}\left(D^{+}\right)^{*} E D^{+} D B^{*}\left(B^{+}\right)^{*}-\frac{1}{2} B^{+} B D^{*}\left(D^{+}\right)^{*} E D^{+} D \\
+ & D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*}+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D \\
= & D^{+} D E+E D^{+} D-\frac{1}{2} D^{+} D E D^{+} D-\frac{1}{2} D^{+} D E D^{+} D+D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*}+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D \\
= & D^{+} D E+E D^{+} D-D^{+} D E D^{+} D+D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*}+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D \\
= & E+D^{*} B B^{+}\left(Z-Z^{*}\right) D B^{*}\left(B^{+}\right)^{*}+B^{+} B D^{*}\left(Z^{*}-Z\right)\left(B^{+}\right)^{*} B^{*} D
\end{aligned}
$$

And by using the condition $A^{*} B B^{+}=B B^{+} A^{*}$, one can have:
$=E+D^{*}\left(Z-Z^{*}\right) D+D^{*}\left(Z^{*}-Z\right) D$
$=E+D^{*} Z D-D^{*} Z^{*} D+D^{*} Z^{*} D-D^{*} Z D$
$=E+0$
$=E$
Conversely, since $A^{*} X B^{*}+B X^{*} A=C$ so, $\left(A^{*} X B^{*}+B X^{*} A\right)^{*}=C^{*}$, therefore; $B X^{*} A+A^{*} X B^{*}=C^{*}$, then, $C=C^{*}$.
Also, $\left(I-D^{+} D\right) E\left(I-D^{+} D\right)=\left(I-D^{+} D\right)\left(D^{*} X B^{*}\left(B^{+}\right)^{*}+B^{+} B X^{*} D\right)\left(I-D^{+} D\right)$

$$
\begin{aligned}
& =\left(I-D^{+} D\right)\left(D^{*} X B^{*}\left(B^{+}\right)^{*}+B^{+} B X^{*} D-D^{*} X B^{*}\left(B^{+}\right)^{*} D^{+} D-B^{+} B X^{*} D\right) \\
& =\left(I-D^{+} D\right)\left(D^{*} X B^{*}\left(B^{+}\right)^{*}-D^{*} X B^{*}\left(B^{+}\right)^{*} D^{+} D\right) \\
& =D^{*} X B^{*}\left(B^{+}\right)^{*}-D^{*} X B^{*}\left(B^{+}\right)^{*} D^{+} D-D^{*} X B^{*}\left(B^{+}\right)^{*}+D^{*} X B^{*}\left(B^{+}\right)^{*} D^{+} D \\
& =0
\end{aligned}
$$

2- Some properties of the mapping μ_{A}

Now, we give some properties of the map $\mu_{A, B}: B(H) \rightarrow B(H)$ is defined by $\mu_{A}(X)=A^{*} X B^{*}+B X^{*} A, X \in B(H)$ where A and B are known operator in

In the first we show this map μ_{A} is an additive map in fact

$$
\begin{aligned}
& \mu_{A}\left(X_{1}+X_{2}\right)=A^{*}\left(X_{1}+X_{2}\right) B^{*}+B\left(X_{1}+X_{2}\right)^{*} A \\
& A^{*} X_{1} B^{*}+A^{*} X_{2} B^{*}+B X_{1}^{*} A+B X_{2}^{*} A \\
& \left(A^{*} X_{1} B^{*}+B X_{1}^{*} A\right)+\left(A^{*} X_{2} B^{*}+B X_{2}^{*} A\right) \\
& =\mu_{A}\left(X_{1}\right)+\mu_{A}\left(X_{2}\right)
\end{aligned}
$$

But the map μ_{A} is no homogenous
Since $\mu_{A}(\alpha X)=A^{*}(\alpha X) B^{*}+B(\alpha X)^{*} A$

$$
\begin{aligned}
& =\alpha A^{*} X B^{*}+\alpha B X^{*} A \\
& \neq \alpha \mu_{A}(X)
\end{aligned}
$$

But if H is a Real Hilbert space then μ_{A} is a linear map
Now we give more properties of this map by the following proposition.

On bounded operator equation $A^{*} X B^{*}+B X^{*} A=C$
Dr. Salim D. M , Ahmed M.K.

Proposition (2.1):

The map μ_{a} is a bounded

Proof:

$$
\begin{aligned}
& \left\|\mu_{A}(X)\right\|=\left\|A^{*} X B^{*}+B X^{*} A\right\| \\
& \leq\left\|A^{*} X B^{*}\right\|+\left\|B X^{*} A\right\| \\
& \leq\left\|A^{*}\right\|\|X\| B^{*}\|+\| B\| \| X^{*}\| \| A \| \\
& =2\|A\| B \| X X \\
& =M\|X\|
\end{aligned}
$$

Where $M=2\|A\|\|B\|$ clearly, $M \geq 0$, Therefore the map μ_{A} is bounded
And the following proposition shows in general the map $\mu_{A}: B(H) \rightarrow B(H)$ is not necessary one to one
Now the following theorem study some properties of the Rang of the map μ_{A}

Theorem (2.2):

Let Range $\left(\mu_{A}\right)=\left\{A^{*} X B^{*}+B X^{*} A, X \in B(H)\right\}$ then :-
i) $\left(\operatorname{Range}\left(\mu_{A}\right)\right)^{*}=\operatorname{Range}\left(\mu_{A}\right)$
ii) α Range $\left(\mu_{A}\right)=\operatorname{Range}\left(\mu_{A}\right), \alpha \in R$
iii) iRange $\left(\mu_{A}\right)=\left\{A X B-B X^{*} A, X \in B(H)\right.$

Proof:

i) $\left(\text { Range }\left(\mu_{A}\right)\right)^{*}=\left\{\left(A^{*} X B^{*}+B X^{*} A\right)^{*}, X \in B(H)\right.$

$$
\begin{aligned}
& =\left\{\left(B X^{*} A+A^{*} X B^{*}\right), X \in B(H)\right\} \\
& =\left\{A^{*} X B^{*}+B X^{*} A, X \in B(H)\right\} \\
& =\operatorname{Range}\left(\mu_{A}\right)
\end{aligned}
$$

ii) α Range $\left(\mu_{A}\right)=\left\{\alpha\left(A^{*} X B^{*}+B X^{*} A\right), X \in B(H)\right\}$

$$
\begin{aligned}
& =\left\{A^{*}(\alpha X) B^{*}+B(\alpha X)^{*} A, X \in B(H)\right\} \\
& =\left\{A^{*} X_{1} B^{*}+B X_{1}^{*} A, X \in B(H)\right\} \text { WhereX }_{1}=\alpha X \\
& \left.=\text { Range }^{*} \mu_{A}\right)
\end{aligned}
$$

iii) i Range $\left(\mu_{A}\right)=\left\{\left(i A^{*} X B^{*}+i B X^{*} A\right), X \in B(H)\right\}$

$$
\begin{aligned}
& =\left\{\left(A^{*}(i X) B^{*}+B(i X)^{*} A\right), X \in B(H)\right\} \\
& =\left\{A^{*} X_{1} B^{*}-B X_{1}^{*} A, X_{1} \in B(H)\right\} \text { WhereX }_{1}=i X
\end{aligned}
$$

Theorem (2.3):
If $C_{1}, C_{2} \in \operatorname{Range}\left(\mu_{A}\right)$.Then, $C_{1}-C_{2} \in \operatorname{Range}\left(\mu_{A}\right)$

Proof:

Let $C_{1}, C_{2} \in \operatorname{Range}\left(\mu_{A}\right)$ then there exist X_{1} and $X_{2} \in B(H)$ such that $A^{*} X_{1} B^{*}+B X_{1}^{*} A=C_{1}$ and $A^{*} X_{2} B^{*}+B X_{2}^{*} A=C_{2}$ So, $A^{*}\left(X_{1}-X_{2}\right) B^{*}+B\left(X_{1}-X_{2}\right)^{*}=C_{1}-C_{2}$

On bounded operator equation $\boldsymbol{A}^{*} \boldsymbol{X} \boldsymbol{B}^{*}+\boldsymbol{B} \boldsymbol{X}^{*} \boldsymbol{A}=\boldsymbol{C}$ \qquad
Dr. Salim D. M , Ahmed M.K.
And therefore; $C_{1}-C_{2} \in \operatorname{Range}\left(\mu_{A}\right)$
From above theorem one can have the following corollary.
Corollary (2.4):
If $C_{1}, C_{2} \cdots, C_{N} \in \operatorname{Range}\left(\mu_{A}\right)$.Then, $C_{1}-C_{2}-\cdots-C_{N} \in$ Range $\left(\mu_{A}\right)$
Recall that a mapping f from a ring R into it self is called derivation if $f(a b)=a f(b)+f(a) b \forall a, b \in R$. the following remark shows the mapping μ_{A} is not derivation .

Remark (2.5):

Since $\mu_{A, B}(X Y)=A^{*}(X Y) B^{*}+B(X Y)^{*} A$

$$
=A^{*}(X Y) B^{*}+B\left(Y^{*} X^{*}\right) A
$$

But $X \mu_{A, B}(Y)=X A^{*} Y B^{*}+X B Y^{*} A$, and, $\mu_{A, B}(X) Y=A^{*} X B^{*} Y+B X^{*} A Y$
Thus , $\mu_{A, B}(X Y) \neq X \mu_{A, B}(Y)+\mu_{A, B}(X) Y$, to illustrate this consider the following example .

Example (2.6):

Consider the unilateral shift operator U is defined on the Hilbert space $\ell^{2}=\left\{\mathrm{x}=\left(\mathrm{x}_{1}, \quad \mathrm{x}_{2}, \quad \ldots\right): \quad \sum_{i=1}^{\infty}\left|x_{i}\right|<\infty, \quad \mathrm{x}_{\mathrm{i}} \in \phi\right\} \quad$ by $\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)=\left(0, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)$, $\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2}$, then bilateral shift operator is the adjoint operator of U is $\mathrm{U}^{*}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right)=\left(\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right) \in \ell^{2}$.
Then $\mu_{U}(X)=B X+X^{*} A$ where B is the bilateral shift operator thus
$\mu_{U}(U)=B U+B U=2 B U$
But, $\mu_{U}(U)+\mu_{U}(I) U=B U+B U+(B+U) U$
$=B U+B U+B U+U^{2}$
$=3 B U+U^{2}$
$\mu_{U}(U) \neq \mu_{U}(U)+\mu_{U}(I) U$
Where I is identity operator therefore; μ_{A} is not derivation.

References:

[1] Dragan S. , "the solution of some operator equations", j. of the Korean math. Soci. Vol. No. 5, pp.1417-1425,2008.
[2] Djordjevic D. , "explicit solution of some operator equation $A^{*} X+X^{*} A=B$ ", J . compu. Appl. Math. , vol. 200, pp.701-704,2007
[3] Emad A., "the natural of the solution for the generalized lyapunov equations" J. ALqadisiah for pure science vol.11, No.4, pp.323-333, 2006
[4] Erwen K. ,"introduction functional analysis", hon wiley and sons inc.,1978 .

$$
\begin{aligned}
& \text { |'لمستخلص }
\end{aligned}
$$

$$
\begin{aligned}
& \text { و B مؤثرات ليس لـها معكوس والمعرفة علـى فضـاء هلبرت الدعقدة H } B \text { وكذالك خواص التطبيق } \\
& \text { - } \mu_{A, B}(X)=A^{*} X B^{*}+B X^{*} A
\end{aligned}
$$

