Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

Summary

The present study aimed to investigate physiological disorders in some liver and kidney functions in hypothyroid Iraqi women. The study was carried on 120 subjects in the Specialist Center of Endocrine and Diabetic diseases at Rusafa region, near AL-Kindey Hospital. That study began on 20/10/2013 to 25/1/2014.

The subjects were divided into 4 groups (control, euthyroid, subclinical and overt hypothyroid). Each group included 30 females, their ages ranged (39.45 ± 1.79) years.

The results showed a significant (P < 0.05) increase in the level of TSH in subclinical (18.23 ± 2.34 μU/L) and overt hypothyroid patients (41.37 ± 3.75 μU/L) in comparison with control (2.09 ± 0.23 μU/L) and euthyroid groups (2.89 ± 0.20 μU/L). The levels of T4 and T3 were within the normal limits in control (79.73 ± 2.11 nmol/L); (1.70 ± 0.07 nmol/L), euthyroid (87.10 ± 2.16 nmol/L); (1.58 ± 0.05 nmol/L) and subclinical (77.76 ± 2.31 nmol/L); (1.52 ± 0.08 nmol/L) respectively. While overt hypothyroid group showed a significant (P < 0.05) decrease in T4 level (46.36 ± 2.32 nmol/L) with normal T3 (1.30 ± 0.11 nmol/L).

The changes in liver function tests in overt hypothyroid group showed a significant (P < 0.05) increase in the levels of SGOT (23.05 ± 2.67 U/L), SGPT (21.89 ± 2.35 U/L) and ALP (99.98 ± 7.47 U/L) in comparison with SGOT in control (8.80 ± 0.88 U/L), euthyroid (11.36 ± 0.85 U/L) and subclinical (11.88 ± 1.42 U/L) and SGPT in control (13.46 ± 0.75 U/L) euthyroid (10.93 ± 1.03 U/L), and subclinical (14.08 ± 1.87 U/L) and in the level of ALP in control (50.27 ± 2.65 U/L), euthyroid (65.27 ± 2.87 U/L) and subclinical (71.58 ± 4.90 U/L) respectively.

Total serum protein (7.49 ± 0.16 g/dl) and bilirubin (1.23 ± 0.11 mg/dl) were increased significantly (P < 0.05) in overt hypothyroid patients in comparable with control (6.82 ± 0.04 gm/dl); (0.613 ± 0.04 mg/dl).
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

mg/dl), euthyroid (6.93 ± 0.07 gm/dl); (0.653 ± 0.04 mg/dl), and subclinical (6.91 ± 0.08 gm/dl); (0.883 ± 0.08 mg/dl) respectively.

Creatinine level was increased significantly (P < 0.05) in subclinical and overt hypothyroid groups (1.07 ± 0.07 mg/dl); (1.26 ± 0.06 mg/dl), in comparable with control and euthyroid groups (0.846 ± 0.03); (0.836 ± 0.02) respectively. The level of uric acid was increased significantly (P < 0.05) in the overt group (7.11 ± 0.11 mg/dl) in comparable with control, euthyroid and subclinical (3.78 ± 0.18 mg/dl); (3.66 ± 0.16 mg/dl); (4.42 ± 0.28 mg/dl) respectively.

We concluded from this study that the overt hypothyroidism had affected the liver function tests by increasing liver enzymes SGOT, SGPT, and ALP. Also we found that total plasma protein and bilirubin levels were increased in overt hypothyroid group. The renal function test showed an increase in the levels of creatinine in subclinical and overt hypothyroid groups while uric acid increased in overt hypothyroid.

Euthyroid group showed normal levels for the above studied parameters which means that the levels of these parameters returned to the normal values in treated hypothyroid group (euthyroid patients) with Levothroxine –L at a dose 50 mg or 100 mg orally.

Introduction:

Thyroid gland is one of the largest endocrine gland, it weights 20-25 grams (1). It is regarded as the master gland to control the body metabolism, growth, development and maintenance at the internal environment. It works under the control of thyroid stimulating hormone (TSH) which in turn is under the control of (TRH). It secretes 93% thyroxine (T4) and 7% tri-iodothyronine T3 (2). Thyroid disorders are commonly separated into two major categories hyperthyroidism (over active thyroid gland) and hypothyroidism (under active thyroid gland). Depending on whether serum thyroid hormones levels (T4, T3) are increased or decreased. (3, 4, 5, 6).

Primary hypothyroidism is indicated when TSH level high > 10 mu/l with decreased T3 and T4 levels, secondary hypothyroidism is diagnosed when TSH is low < 0.4 mu/l with decreased T3 and T4 levels, where as the diagnosed of subclinical hypothyroidism is mainly based on increased TSH level between 4.5 -10mu/l while T3 and T4 with in normal range. (7, 8).

Subclinical hypothyroidism may progress to overt hypothyroidism in approximately 2.5% of cases annually (9, 10).

Thyroid hormones regulate the Basal Metabolic Rate (BMR) of all cells including hepatocytes and there by modulate hepatic function (11). Hypothyroidism may be have features that mimic liver disease and
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

muscle cramps in the presence of elevated of AST (SGOT) enzyme from myopathy (12). Pandey et al. (13) had been reported that the alterations in liver enzymes occurred in hypo and hyperthyroidism patients in pokhara. More over total serum protein and bilirubin levels were also affected in hypothyroid patients (14,15,16). It was found that serum creatinine and uric acid levels were increased in hypothyroid patients and could be affected due to a decrease in the levels of T4 and T3 hormones (14,15,17,18)

Aims of the study:
To investigate the physiological disorders in some liver and renal functions in females hypothyroid patients through the following items:

1- Thyroid hormones (TSH, T4, T3) assay among control and hypothyroid groups.

2-Biochemical measurements for liver functions:
 a- Liver enzymes (AST, ALT and ALP u/l).
 b- Bilirubin levels mg/dl.
 c- Total serum protein levels (TSP) gm/L.

3-Biochemical parameters for renal function test:
 a- Serum creatinine (mg/dl).
 b- Uric acid (mg/dl).

Materials and Methods:
Collection of Information
A questionnaire form was used for recording the necessary information that concerning with subject groups which included name, age, sex, length, body weight, blood arterial pressure, duration of the disease, type of medical treatment beside marital status.

Samples collection:
The study was conducted on (120) females divided into four groups (control, euthyroid, sub clinical and overt hypothyroid patients), each group included 30 subjects. Their ages ranged between 20-60 years with average (39.45 ± 1.79) who visited to the Center Specialist Endocrine and Diabetes Diseases, at Al-Rusafa region adjacent to the AL-kindly hospital, the study was begun at (20/10/2013-25/1/2014). Ten milliliter of blood via venipuncture was drawn from each fasting individual between 8:30 to 10:30 AM, by using disposable syringes and placed in sterile tubes and left at room temperature for 15-30 minutes and then centrifuged at a rate of 5000 rpm for ten minutes. Sera were separated and kept in Apendrof tubes, stored in deep freeze at -20°C till examination for biochemical assay.

Experimental design
The study included four groups:
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

1- First group (control group) included (30) subjects, their age ranged between 20-30 years by mean (34.17± 1.63).
2- Second group (Euthyroid) included (30) subjects, their age ranged between 21-60 years with mean (41.03 ± 2.21).
3- Third group (subclinical) included (30) subjects, their age ranged between 23-60 years with mean (41.70 ± 1.63).
4- Fourth group (overt hypothyroidism) included (30) subjects, their age ranged between 23-60 years with mean (40.93 ± 1.69).

Samples collection for testing:
1- Thyroid hormones assay: (Thyroid stimulating hormone (TSH)(mu/l), Thyroxine hormone (T4) (nmol/l) and Tri-iodothyronine (T3) (nmol/l))

2- Biochemical parameters for liver functions:
 a- Liver enzyme (Alanine Aminotrasferase (ALT), Aspartate Aminotrasferase (AST) and Alkaline phosphatase (ALP))
 b- Bilirubin (mg/dl).
 c- Total serum protein (TSP) gm/l.

3- Biochemical parameters for renal function test:
 a- Serum creatinine (mg/dl).
 b- Uric acid (mg/dl).

Measurement of Thyroid Hormones Levels (TSH,T4,T3) in Blood Serum:
TSH,T4,T3 hormone concentrations were measured in the serum by using Biomerieux kits according to the vida method.
At the end of assay results are automatically calculated by instrument in relation to the calibration curve stored in memory, and then printed out.

Reference Range:
TSH=0.25 - 5.3 mu/l , T4 =60 - 120 nmol/l , T3 = 0.4 - 2.3 nmol/l

Liver Enzymes Test:
Alanine Aminotrasferase (ALT): ALT was measured in sera for subjects using Randox kits, by colorimetric method Reitman and Frankel (19)
Principle: - α-oxoglutarate + L-alanine _ALT_ L-glutamate + pyruvate
 Alanine Aminotransferase was measured by monitoring in the concentration of pyruvate
Normal range: Men 4-31 u/l , Women 4-21 u/l

Aspartate Aminotrasferase (AST)
Concentration of AST was measured in the sera for subjects using Randox kit by colorimetric method Reitman and frankel (19)
Principle: -
α-oxoglutarate + L-aspartate _GOT_ L-glutamate + oxaloacetate
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

1- Mix and read the absorbance of sample (A sample) against the reagent blank after 5 minutes by spectrophotometer at a wave length 546 nm.

Normal range:

- Men: 4-26 u/l
- Women: 4-21 u/l

Phosphatase alkaline: The Phosphatase alkaline was measured in serum by using Biomerieux method according to method of kit.

Principle: Colorimetric determination of alkaline phosphatase activity according to the following reaction:

\[
\text{Phenyl phosphate} \xrightarrow{\text{Alkaline phosphatase}} \text{Phenol + Phosphate}
\]

The liberated phenol is measured in the presence of 4-aminoatipyrine and potassium ferricyanide. The presence of sodium arsenate in the reagent stops the enzymatic reaction. Kind and King(20), Befield and Goldberg(21)

Range of expected values in serum:

- **Children:** 10-20 kind and king U/100 ml; 71-142 u/l
- **Adults:** 3-13 kind and king U/100 ml; 21-92 U/l

One kind and king U/100ml:n = 20; **Note:** U/l : n = 14

Total Serum Protein: The total protein was measured by using Biuret method according to of kit. Koller et al.(24)

Principle: Protein gives an intensive violet–blue complex with copper salts in an alkaline medium. Iodide is included as an antioxidant. The intensity of the color formed is proportional to the total protein concentration in sample. Koller et al.(24), Burtis et al.(23).

Reference values:

- **Adult:** 6.6–8.3 g/dl
- **New born:** 5.2 – 9.1 g/dl

Bilirubin: The Bilirubin was measured in serum by using Randox method according to method of kit.

Principle: Direct (conjugated) bilirubin reacts with diazotized sulphanilic acid in alkaline medium to form a blue coloured complex. Total bilirubin is determined in the presence of caffeine, which releases albumin bound bilirubin, by the reaction with diazotized.

Normal values in serum:

- **Total Bilirubin:** up to 17 µ mol/l, up to 1 mg/dl
- **Direct Bilirubin:** up to 4.3 µ mol/l

Kidney Functions Test:

Measurement of Serum Creatinine

The creatinine was measured by using jaffe colorimetric test according to method of kit.

Reference values: serum or plasma
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women ..

Ali Shalash Sultan and Ban Hussein Hameedi

Male: 0.7 – 1.4 mg/dl = 61.8 – 123.7 µ mol/l
Female: 0.6 – 1.1 mg/dl = 53.0 – 97.2 µ mol/l

Measurement of serum uric acid:

Uric acid was measured in serum by using biosystems kit method

Principle: Uric acid in the sample orginates by means of coupled reaction is described below and a coloured complex that can be measured by spectrophotometer. (Barham and Trinder, (24), Fossati et al.(25)

Uric acid +O2 +2H2O uricase Alantion + CO2 + H2O
2H2O2 + 4-Aminoantipyrine + DcFs peroxidase Quinoneimine + 4H2O

Reference values: Serum and plasma
Men: 3.5 – 7.2 mg/dl = 210 - 420 µ mol/l
Women: 2.6 – 6.0 mg/dl = 150 - 350 µ mol/l

Statistical Analysis

Statistical analysis was performed using “The statistical Analysis System-SAS (2010)” .Analysis of variance one way (ANOVA) was done to assess the significance among the groups and between groups respectively.

Least significant difference ,LSD under probability (p < 0.05 ; P < 0.01)was used to significant comparison between means of the groups Pearson correlation coefficient between parameters was estimated.

Results and Discussion

Results: Table (1) is presented the levels of thyroid hormones in all study groups:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TSH (µ mol/l)</th>
<th>T4 (n mol/l)</th>
<th>T3 (n mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. values</td>
<td>(0.25-5.3)</td>
<td>(60-120)</td>
<td>(0.4-2.3)</td>
</tr>
<tr>
<td>Control</td>
<td>2.09 ± 0.23 c</td>
<td>79.73 ± 2.11 b</td>
<td>1.70 ± 0.07 a</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>2.89 ± 0.20 c</td>
<td>87.10 ± 2.16 a</td>
<td>1.58 ± 0.05 a</td>
</tr>
<tr>
<td>Subclinical</td>
<td>18.23 ± 2.34 b</td>
<td>77.76 ± 2.31 b</td>
<td>1.52 ± 0.08 ab</td>
</tr>
<tr>
<td>Overt</td>
<td>41.37 ± 3.75 a</td>
<td>46.36 ± 2.32 c</td>
<td>1.30 ± 0.11 b</td>
</tr>
<tr>
<td>LSD Value</td>
<td>6.12 *</td>
<td>6.250 *</td>
<td>0.225 *</td>
</tr>
</tbody>
</table>

* (P<0.05).

A significant (P< 0.05) increase was observed in the levels of serum TSH in the subclinical (18.23± 2.34 mu/L) and overt (41. 37± 3.75 mu/L) groups in comparison with the control (2.09 ± 0.23 mu/L) and euthyroid (2.89± 0.20 mu/L) groups. There was a significant (P< 0.05) decrease in the levels of T4 hormone (46.36± 2.32 nmol/l) in the overt hypothyroid
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

Group in comparison with control (79.73 ± 2.11 n mol/l), euthyroid (87.10 ± 2.16 nmol/l) and subclinical (77.76 ± 2.31 nmol/l) groups. Although there was a significant (P < 0.05) increase in the levels of T4 (87.10 ± 2.16 n mol/l) in the euthyroid group but the value was within normal limits (60-120 n mol/l). The subclinical and overt groups showed a significant (P < 0.05) decrease in the level of T3 (1.52 ± 0.08 nmol/l); (1.30 ± 0.11 nmol/l) respectively in comparison with euthyroid and control (1.58 ± 0.05 nmol/l); (1.70 ± 0.07 nmol/l) groups. But the values were within normal range (0.4-2.3 nmol/l) so the subclinical group showed high TSH with normal levels of T4 and T3 hormones, while the overt group showed highly increase of TSH (41.37 ± 3.75 nmol/l) with low level of T4 (46.36 ± 2.32 nmol/l) and normal level of T3. The levels of thyroid hormones among different groups were presented in the figures (1), (2), and (3).

![Figure 1](image1.png)
Figure (1) compare between difference groups in level of TSH (μIU)

![Figure 2](image2.png)
Figure (2) compare between difference groups in level of T4

![Figure 3](image3.png)
Figure (3) compare between difference groups in level of T3 (nmol/l)
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women ..
Ali Shalash Sultan and Ban Hussein Hameedi

Table (2) showed the levels of liver enzymes among study groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SGOT (U/L)</th>
<th>SGPT (U/L)</th>
<th>ALP (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>N. values</td>
<td>(4-21)</td>
<td>(4-24)</td>
</tr>
<tr>
<td>Control</td>
<td>8.80 ± 0.88 b</td>
<td>13.46 ± 0.75 b</td>
<td>50.27 ± 2.65 c</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>11.36 ± 0.85 b</td>
<td>10.93 ± 1.03 b</td>
<td>65.27 ± 2.87 b</td>
</tr>
<tr>
<td>Subclinical</td>
<td>11.88 ± 1.42 b</td>
<td>14.08 ± 1.87 b</td>
<td>71.58 ± 4.90 b</td>
</tr>
<tr>
<td>Overt</td>
<td>23.05 ± 2.67 a</td>
<td>21.89 ± 2.35 a</td>
<td>99.98 ± 7.47 a</td>
</tr>
<tr>
<td>LSD Value</td>
<td>4.575 *</td>
<td>4.581 *</td>
<td>13.669 *</td>
</tr>
</tbody>
</table>

* (P<0.05).

The level of SGOT (23.05 ± 2.67u/L) was increased significantly (P< 0.05) in the overt group when compared with control (8.80 ± 0.88 u/L); euthyroid (11.36 ± 0.85 u/L) and subclinical (11.88 ± 1.92 u/L) there was a significant (P< 0.05) increase in the level of SGPT (21.89 ± 2.35u/L) in the overt group. In comparison with control (13.46 ± 0.75) euthyroid (10.93 ± 1.03 u/L) and subclinical (14.08 ± 1.87 u/L) but the levels of SGPT in overt group (21.89 ± 2.75u/L) was within normal range (4-24 u/L). The overt group showed a significant (P< 0.05) increase in the levels of ALP(99.98±7.47u/L) in comparison with control (50.27 ± 7.65u/L), euthyroid (65.27 ± 2.87u/L) and subclinical (71.58 ± 4.90 u/L). Although there was a significant increase (P< 0.05) in the ALP levels in euthyroid (65.27 ± 2.87 u/L) and subclinical (71.58 ± 4.90 u/L) but the values were within normal range (21-92 u/L). The all differences among liver enzymes levels were presented in the figures(4),(5) and (6).
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women ………………………………………..
Ali Shalash Sultan and Ban Hussein Hameedi

Table (3) levels of total serum protein, Bilirubin and (M ± SE) in the study groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Protein (g/dl)</th>
<th>Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.82 ± 0.04 b</td>
<td>0.613 ± 0.04 c</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>6.93 ± 0.07 b</td>
<td>0.653 ± 0.04 c</td>
</tr>
<tr>
<td>Subclinical</td>
<td>6.91 ± 0.08 b</td>
<td>0.883 ± 0.08 b</td>
</tr>
<tr>
<td>Overt</td>
<td>7.49 ± 0.16 a</td>
<td>1.23 ± 0.11 a</td>
</tr>
</tbody>
</table>

LSD Value: 0.283 *, 0.208 *

A significant (P < 0.05) increase was observed in the level of total serum protein (7.49 ± 0.16 gm/dl), when compared with the control (6.82 ± 0.04) g/dl, euthyroid (6.93 ± 0.07) g/dl and subclinical (6.91 ± 0.08) g/dl respectively, the overt group was within normal values (6.6-8.3) g/dl. The serum bilirubin level increased (P < 0.05) significantly (1.23 ± 0.11 mg/dl) in the overt group when compared with control (0.61 ± 0.04 mg/dl), euthyroid (0.65 ± 0.04 mg/dl) and subclinical (0.88 ± 0.08 mg/dl) respectively. Figure (7) and (8).

A significant (P < 0.05) increase was observed in the level of total serum protein (7.49 ± 0.16 gm/dl), when compared with the control (6.82 ± 0.04) g/dl, euthyroid (6.93 ± 0.07) g/dl and subclinical (6.91 ± 0.08) g/dl respectively, the overt group was within normal values (6.6-8.3) g/dl. The serum bilirubin level increased (P < 0.05) significantly (1.23 ± 0.11 mg/dl) in the overt group when compared with control (0.61 ± 0.04 mg/dl), euthyroid (0.65 ± 0.04 mg/dl) and subclinical (0.88 ± 0.08 mg/dl) respectively. Figure (7) and (8).
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women
Ali Shalash Sultan and Ban Hussein Hameedi

Figure (8) Compare between difference groups in level of Bilirubin (mg/dl)

Table (4) Levels of Creatinine and Uric acid (M± SE) in study groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Creatinine (mg/dl)</th>
<th>Uric acid (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>N. values</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.846 ± 0.03 c</td>
<td>3.78 ± 0.18 c</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>0.836 ± 0.02 c</td>
<td>3.66 ± 0.16 c</td>
</tr>
<tr>
<td>Subclinical</td>
<td>1.07 ± 0.07 b</td>
<td>4.42 ± 0.28 b</td>
</tr>
<tr>
<td>Overt</td>
<td>1.26 ± 0.06 a</td>
<td>7.11 ± 0.11 a</td>
</tr>
<tr>
<td>LSD Value</td>
<td>0.140 *</td>
<td>0.555 *</td>
</tr>
</tbody>
</table>

A significant (P<0.05) increase in the level of serum creatinine was noticed in the subclinical (1.07 ± 0.07 mg/dl) and overt groups (1.26 ± 0.06 mg/dl) in comparison with euthyroid (0.83 ± 0.02 mg/dl) and control (0.84 ± 0.03 mg/dl) groups. The level of uric acid increased significantly (P<0.05) in the overt group (7.11 ± 0.11 mg/dl). When compared with control (3.78 ± 0.18 mg/dl) euthyroid (3.66 ± 16 mg/dl) and subclinical group (4.42 ± 0.28 mg/dl) respectively. The values presented in the figure (9) and (10).

Figure (9) Compare between difference groups in level of Creatinine (mg/dl)
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women
Ali Shalash Sultan and Ban Hussein Hameedi

Discussion:
Hypothyroidism is the disease state caused by insufficient production of thyroid hormones by the thyroid gland. Thyroid hormones are essential for normal organ growth, development and function nearly of all tissues (26,2). Subclinical hypothyroidism (SCH) is defined as an elevated serum thyroid stimulating hormone (TSH) level with normal serum thyroxine (T4) and serum tri-iodothyrodine (T3) level. Our findings in table (1) were in agreement with that reported by (27,28). Subclinical hypothyroidism has been suggested as a risk factor, for hypothyroid complications there is a need to identify and treat patients with SCH before they convert to overt hypothyroidism and develop complications (29,30). Khandelwal and Tandon, (10) reported that serum TSH raised concentrations identify primary hypothyroidism irrespective of the cause or severity. If the TSH level is high, further measurement of the free T4 should be carried out. A low serum free T4 in conjunction with an elevated serum TSH level establishes a diagnosis of overt hypothyroidism, while in subclinical hypothyroidism the serum free T4 concentration is, by definition normal so our results were comparable with that findings in table (1) so patients with overt hypothyroidism, whether symptomatic or not, showed being treated as hypothyroidism is the majority of patients is permanent and require lifelong treatment. The data presented in table (2) clearly indicate how biochemical markers of liver may be affected by alteration in thyroid hormones levels in the body. In the present study significant difference was seen in the liver function tests when subjects in hypothyroid group were compared with control and euthyroid subjects. Hypothyroidism may have features that mimic liver disease (pseudo-liver disease): examples include myalgias, fatigue and muscle cramps (31), and in the presence of elevated SGOT from myopathy (11). The liver enzyme (AST/SGOT) showed a significant positive correlation (P< 0.05) with serum TSH levels in the overt hypothyroidism (r = 0.30) and negative correlation (r= - 0.032) in T3 when compared with control, euthyroid and subclinical hypothyroid groups in our present study. That may be due to myopathy associated

Figure (10) Compare between difference groups in level of Uric acid (mg/dl)

Discussion:
Hypothyroidism is the disease state caused by insufficient production of thyroid hormones by the thyroid gland. Thyroid hormones are essential for normal organ growth, development and function nearly of all tissues (26,2). Subclinical hypothyroidism (SCH) is defined as an elevated serum thyroid stimulating hormone (TSH) level with normal serum thyroxine (T4) and serum tri-iodothyrodine (T3) level. Our findings in table (1) were in agreement with that reported by (27,28). Subclinical hypothyroidism has been suggested as a risk factor, for hypothyroid complications there is a need to identify and treat patients with SCH before they convert to overt hypothyroidism and develop complications (29,30). Khandelwal and Tandon, (10) reported that serum TSH raised concentrations identify primary hypothyroidism irrespective of the cause or severity. If the TSH level is high, further measurement of the free T4 should be carried out. A low serum free T4 in conjunction with an elevated serum TSH level establishes a diagnosis of overt hypothyroidism, while in subclinical hypothyroidism the serum free T4 concentration is, by definition normal so our results were comparable with that findings in table (1) so patients with overt hypothyroidism, whether symptomatic or not, showed being treated as hypothyroidism is the majority of patients is permanent and require lifelong treatment. The data presented in table (2) clearly indicate how biochemical markers of liver may be affected by alteration in thyroid hormones levels in the body. In the present study significant difference was seen in the liver function tests when subjects in hypothyroid group were compared with control and euthyroid subjects. Hypothyroidism may have features that mimic liver disease (pseudo-liver disease): examples include myalgias, fatigue and muscle cramps (31), and in the presence of elevated SGOT from myopathy (11). The liver enzyme (AST/SGOT) showed a significant positive correlation (P< 0.05) with serum TSH levels in the overt hypothyroidism (r = 0.30) and negative correlation (r= - 0.032) in T3 when compared with control, euthyroid and subclinical hypothyroid groups in our present study. That may be due to myopathy associated
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women ... Ali Shalash Sultan and Ban Hussein Hameedi

with hypothyroidism. Our data was in agreement with that reported by Ahmad et al. (32) who found an elevation in the levels of SGOT (34.7 ± 1.87 u/l) and SGPT (47.6 ± 2.21 u/l) in diagnosed hypothyroidism 55 subjects (24 males and 31 females).

Pandey et al. (13) found an increase in the levels of SGOT, SGPT and ALP enzymes, in 30 overt hyperthyroid and 30 hypothyroid patients visited Manipal teaching hospital in pokhara. The increase was higher in hyperthyroid in comparison with hypothyroid group. The age range of participants was 20-60 years. They concluded that thyroid dysfunction may disturb liver, muscle and other organs function and vice versa.

Our results for liver enzymes SGOT, SGPT, ALP were in agreement with their elevation with Yadav et al. (16) who found an increase in these enzymes, in 124 women were found to be hypothyroid, (77 subclinical hypothyroid and 47 overt hypothyroid) and 120 were euthyroid (control). The increase in the liver enzymes was significant in overt hypothyroid group in our study. A significant change was observed in serum ALP levels which showed a positive correlation (r=0.11NS) with serum TSH levels in overt hypothyroid subjects. While Arora et al. (15) found (r=-0.018) in ALP levels in 80 subclinical hypothyroid patients. These observations may be explained on the basis that in hypothyroidism there is an increase in membrane cholesterol phospholipids ratio and diminished membrane fluidity, which affect a number of canalicular membrane transporters and enzymes, including the Na⁺,K⁺-ATPase resulting in the changes ALP enzymes (33). Serum ALP levels can rise as a result of either intra hepatic or extra hepatic obstruction due to bile acids accumulation in hepatocytes rather than impairment bile secretion (34) so when bile acids accumulation intracellular solubilization of the hepatic plasma membrane ensues, leading to ALP release (35). Serum total protein demonstrated a statistically significant increase in overt hypothyroid subjects table (3) as compared with control, euthyroid and subclinical groups. The increase in the level of TSP may be related to low grade of inflammation associated with even mild degrees of hypothyroidism may lead to a resultant increase in inflammatory proteins and immunoglobulins (36). Yadav et al. (16) recorded a statistically significant increased value of TSP in subclinical and overt hypothyroid cases. As the liver extracts 5-10% of plasma T4 during a single passage indicating that subclinical amount of protein-bound T4 is available for uptake (31). An active stereo specific transport mechanism has been identified for transporting T4 and T3 across the hepatocyte membrane. The intracellular concentrations of the free hormones (T3, T4) are higher than the plasma levels and the process is energy dependent.
So this may lead to an increase in the levels of TSP in hypothyroid patients. The bilirubin levels in our study was higher in the overt hypothyroid groups (1.23 ± 0.11 mg/dl), this increase may be associated with cholestatic jaundice attributed to reduced bile excretion (38).

As Umesono et al. (39) reported a reduced bile excretion in experimental hypothyroidism due to decreased in the activity of bilirubin UDP – glucuronyl transferase. Arora et al. (15) reported an increase in bilirubin(1.14±0.59mg/dl) in the 80 hypothyroid patients. Yadav et al. (16) found a higher level of bilirubin in overt hypo-thyroid group but the values were not found to be statistically significant, but bilirubin level was in agreement with that reported in our study in subclinical hypothyroid group which was found not to be statistically significant. Table (4) showed an increase in the creatinine and uric acid levels in overt hypothyroidism group, our results were in agreement with Tayal et al. (14) who found an increase of creatinine levels in 98 subclinical and 89 overhypothyroid patients and the uric acid increased in the overt hypothyroid subjects in comparison with 198 euthyroid, based on their findings suggested that serum creatinine was influenced by a decrease in T3 and/or T4 with an increase with TSH levels. The increase in uric acid in the overt hypothyroid in our study may be result from either increased production due to myopathy associated with hypothyroidism or due to decreased renal clearance of uric acid (40).

Arora et al. (15) found an increase in the level of serum creatinine and uric acid in 80 hypothyroid patients. Our findings were comparable with that reported by Saini et al. (41) who reported a significant increase in creatinine and uric acid levels in 47 patients with overt hypothyroid(TSH ≥ 10.0mlU/L) and 77 patients with subclinical hypothyroidism(TSH 6.0-9.9mlU/L) when compared with 120 euthyroid control. Our results were in agreement with that recorded by Wedaatalla and Abdella (42) who found a significant(P< 0.05) increase in the levels of uric acid in both hypothyroidism and hyperthyroidism in Sudanese women (6.7 ± 1.69 mg/dl) and (6.5 ± 1.66 mg/dl) respectively when compared with control(4.0 ± 0.87 mg/dl). Kumar (17) found in 30 patients newly diagnosed primary hypothyroidism an increase in the serum creatinine and uric acid compared to euthyroid patients. The study confirms association of hypothyroidism with elevated uric acid and creatinine which may be due to a decrease in GFR levels and alteration in Renin- angiotension - aldosterone system (RAAS) , rennin reduced in the hypothyroid and leading to increased vascular resistance and a decrease in GFR as thyroid hormones act on systemic vascular resistance (SVR) and vascular smooth
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

Our results were also in accordance with that reported by Khan et al. (18) in clinically and biochemically diagnosed 80 overt hypothyroid patients divided in 3 groups A,B,C of both sexes, age 20-60 years, with history of no thyroxine treatment in the last 3 months and 31 euthyroid subjects. That the TSH was between 0.5 -5.0 mlu/L in group A, 50 -100 mlu/L in group B and > 100 mlu/L in group C. The serum creatinine and uric acid levels were 1.38 ± 0.53 mg/dl and 7.00 ± 2.54 mg/dl respectively in the overt hypothyroid patients. The serum creatinine values were found gradually increased in the group A to group C.

Conclusions: We concluded from our present study that the overt hypothyroidism had been affected liver function through:
1- Increasing levels of liver enzymes (AST,ALT,ALP), bilirubin, total serum protein.
2- Renal function was affected through increasing level of serum creatinine in subclinical and overt hypothyroid group, while uric acid increased in overt hypothyroid group only.
3- Treated hypothyroid (euthyroid patients) showed normal values for thyroid hormones and others parameters, suggesting that treatment of hypothyroid patients had adverse effects on impaired parameters in the liver and kidney function.

Recommendations:
Our recommendations include the following:
1- Evaluating the level of thyroid peroxidase (TPO) enzyme among hypothyroid and find its correlation with level of TSH, T4, and T3.
2- Evaluating the level of parathyroid hormone and calcitriol among hypothyroid patients and their correlation with level of calcium (Ca^{2+}).
3- More study about the levels of Zinc, Selenium and some antioxidants among hypothyroid groups.
4- Evaluation or estimation of leptin level among different hypothyroid subjects and its correlation with BMI.
5- Evaluation of levels of different protein, albumin, α1, α2, β and Gamma globulins with C-reactive protein to evaluate hypothyroid affects on total serum protein.

References
Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women ..
Ali Shalash Sultan and Ban Hussein Hameedi

Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women

Ali Shalash Sultan and Ban Hussein Hameedi

Levels of Liver Enzymes and Some Changes in Renal Functions in Iraqi Hypothyroid Patients Women ..

Ali Shalash Sultan and Ban Hussein Hameedi

<table>
<thead>
<tr>
<th>Liver Enzymes</th>
<th>Control Group</th>
<th>Hypothyroid Group</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGOT</td>
<td>71.58 ± 4.90 U/L</td>
<td>65.27 ± 2.87 U/L</td>
<td>>0.05</td>
</tr>
<tr>
<td>SGPT</td>
<td>13.08 ± 0.75 U/L</td>
<td>14.08 ± 1.87 U/L</td>
<td>>0.05</td>
</tr>
<tr>
<td>ALP</td>
<td>99.98 ± 7.47 U/L</td>
<td>65.98 ± 2.65 U/L</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Acheter-ethyl-levothyroxine 211

Acheter-ethyl-levothyroxine 211