Generalized Left Jordan ideals In Prime Rings

Main Article Content

Kassim A. Jassim
Ali Kareem Kadhim

Abstract

     Let R be a prime ring and U be a (σ,τ)-left Jordan ideal .Then in this paper, we proved the following , if aU Z (Ua Z), a R, then a = 0 or U Z. If aU C s,t (Ua  C s,t), a R, then  either a = 0   or   U Z. If  0 ≠ [U,U] s,t .Then U Z. If  0≠[U,U] s,t C s,t, then   U Z  .Also, we checked the converse  some of these theorems and showed that are not true, so we give an example for them.

Article Details

How to Cite
Generalized Left Jordan ideals In Prime Rings. (2019). Journal of the College of Basic Education, 17(72), 87-92. https://doi.org/10.35950/cbej.v17i72.4500
Section
pure science articles

How to Cite

Generalized Left Jordan ideals In Prime Rings. (2019). Journal of the College of Basic Education, 17(72), 87-92. https://doi.org/10.35950/cbej.v17i72.4500

Similar Articles

You may also start an advanced similarity search for this article.